File: api-backends.md

package info (click to toggle)
python-thinc 9.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,896 kB
  • sloc: python: 17,122; javascript: 1,559; ansic: 342; makefile: 15; sh: 13
file content (1609 lines) | stat: -rw-r--r-- 71,178 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
---
title: Backends & Math
next: /docs/api-util
---

All Thinc models have a reference to an `Ops` instance, that provides access to
**memory allocation** and **mathematical routines**. The `Model.ops` instance
also keeps track of state and settings, so that you can have different models in
your network executing on different devices or delegating to different
underlying libraries.

Each `Ops` instance holds a reference to a numpy-like module (`numpy` or
`cupy`), which you can access at `Model.ops.xp`. This is enough to make most
layers work on **both CPU and GPU devices**. Additionally, there are several
routines that we have implemented as methods on the `Ops` object, so that
specialized versions can be called for different backends. You can also create
your own `Ops` subclasses with specialized routines for your layers, and use the
[`set_current_ops`](#set_current_ops) function to change the default.

| Backend    |        CPU         |        GPU         |        TPU        | Description                                                                                                 |
| ---------- | :----------------: | :----------------: | :---------------: | ----------------------------------------------------------------------------------------------------------- |
| `AppleOps` | <i name="yes"></i> | <i name="no"></i>  | <i name="no"></i> | Use AMX matrix multiplication units on Apple Silicon Macs. Added in Thinc 9.0.                              |
| `CupyOps`  | <i name="no"></i>  | <i name="yes"></i> | <i name="no"></i> | Execute via [`cupy`](https://cupy.chainer.org/) and custom CUDA.                                            |
| `MPSOps`   | <i name="yes"></i> | <i name="yes"></i> | <i name="no"></i> | Use the GPU on Apple Silicon Macs for PyTorch models, use AMX matrix multiplication units for Thinc Models. |
| `NumpyOps` | <i name="yes"></i> | <i name="no"></i>  | <i name="no"></i> | Execute via `numpy`, [`blis`](https://github.com/explosion/cython-blis) (optional) and custom Cython.       |

## Ops {#ops tag="class"}

The `Ops` class is typically not used directly but via `NumpyOps`, `AppleOps`,
`CupyOps` or `MPSOps`, which are subclasses of `Ops` and implement a **more
efficient subset of the methods**. You also have access to the ops via the
[`Model.ops`](/docs/api-model#attributes) attribute. The documented methods
below list which backends provide optimized and more efficient versions
(indicated by <i name="yes"></i>), and which use the default implementation.
Thinc also provides various [helper functions](#util) for getting and setting
different backends.

<infobox variant="warning">

The current set of implemented methods is somewhat arbitrary and **subject to
change**. Methods are moved to the `Ops` object if we want different
implementations for different backends, e.g. cythonized CPU versions or custom
CUDA kernels.

</infobox>

```python
### Example
from thinc.api import Linear, get_ops, use_ops

model = Linear(4, 2)
X = model.ops.alloc2f(10, 2)
blis_ops = get_ops("numpy", use_blis=True)
use_ops(blis_ops)
```

### Attributes {#attributes}

| Name          | Type         | Description                                                                              |
| ------------- | ------------ | ---------------------------------------------------------------------------------------- |
| `name`        | <tt>str</tt> | **Class attribute:** Backend name, `"numpy"`, `"apple"`, `"cupy"` or `"mps"`.            |
| `xp`          | <tt>Xp</tt>  | **Class attribute:** `numpy` or `cupy`.                                                  |
| `device_type` | <tt>str</tt> | The device type to use, if available for the given backend: `"cpu"`, `"gpu"` or `"tpu"`. |
| `device_id`   | <tt>int</tt> | The device ID to use, if available for the given backend.                                |

### Ops.\_\_init\_\_ {#init tag="method"}

| Argument       | Type          | Description                                                                                                   |
| -------------- | ------------- | ------------------------------------------------------------------------------------------------------------- |
| `device_type`  | <tt>str</tt>  | The device type to use, if available for the given backend: `"cpu"`, `"gpu"` or `"tpu"`.                      |
| `device_id`    | <tt>int</tt>  | The device ID to use, if available for the given backend.                                                     |
| _keyword-only_ |               |                                                                                                               |
| `use_blis`     | <tt>bool</tt> | `NumpyOps`: Use [`blis`](https://github.com/explosion/cython-blis) for single-threaded matrix multiplication. |

### Ops.minibatch {#minibatch tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Iterate slices from a sequence, optionally shuffled. Slices may be either views
or copies of the underlying data. Supports the batchable data types
[`Pairs`](/docs/api-types#pairs), [`Ragged`](/docs/api-types#ragged) and
[`Padded`](/docs/api-types#padded), as well as arrays, lists and tuples. The
`size` argument may be either an integer, or a sequence of integers. If a
sequence, a new size is drawn before every output. If `shuffle` is `True`,
shuffled batches are produced by first generating an index array, shuffling it,
and then using it to slice into the sequence. An internal queue of `buffer`
items is accumulated before being each output. Buffering is useful for some
devices, to allow the network to run asynchronously without blocking on every
batch.

The method returns a [`SizedGenerator`](/docs/api-types#sizedgenerator) that
exposes a `__len__` and is rebatched and reshuffled every time it's executed,
allowing you to move the batching outside of the training loop.

```python
### Example
batches = model.ops.minibatch(128, train_X, shuffle=True)
```

| Argument       | Type                           | Description                                                        |
| -------------- | ------------------------------ | ------------------------------------------------------------------ |
| `size`         | <tt>Union[int, Generator]</tt> | The batch size(s).                                                 |
| `sequence`     | <tt>Batchable</tt>             | The sequence to batch.                                             |
| _keyword-only_ |                                |                                                                    |
| `shuffle`      | <tt>bool</tt>                  | Whether to shuffle the items.                                      |
| `buffer`       | <tt>int</tt>                   | Number of items to accumulate before each output. Defaults to `1`. |
| **RETURNS**    | <tt>SizedGenerator</tt>        | The batched items.                                                 |

### Ops.multibatch {#multibatch tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Minibatch one or more sequences of data, and return lists with one batch per
sequence. Otherwise identical to [`Ops.minibatch`](#minibatch).

```python
### Example
batches = model.ops.multibatch(128, train_X, train_Y, shuffle=True)
```

| Argument       | Type                           | Description                                                        |
| -------------- | ------------------------------ | ------------------------------------------------------------------ |
| `size`         | <tt>Union[int, Generator]</tt> | The batch size(s).                                                 |
| `sequence`     | <tt>Batchable</tt>             | The sequence to batch.                                             |
| `*other`       | <tt>Batchable</tt>             | The other sequences to batch.                                      |
| _keyword-only_ |                                |                                                                    |
| `shuffle`      | <tt>bool</tt>                  | Whether to shuffle the items.                                      |
| `buffer`       | <tt>int</tt>                   | Number of items to accumulate before each output. Defaults to `1`. |
| **RETURNS**    | <tt>SizedGenerator</tt>        | The batched items.                                                 |

### Ops.seq2col {#seq2col tag="method"}

<inline-list>

- **default:** <i name="yes"></i> (`nW=1` only)
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Given an `(M, N)` sequence of vectors, return an `(M, N*(nW*2+1))` sequence. The
new sequence is constructed by concatenating `nW` preceding and succeeding
vectors onto each column in the sequence, to extract a window of features.

| Argument       | Type                      | Description                                                       |
| -------------- | ------------------------- | ----------------------------------------------------------------- |
| `seq`          | <tt>Floats2d</tt>         | The original sequence.                                            |
| `nW`           | <tt>int</tt>              | The window size.                                                  |
| _keyword-only_ |                           |                                                                   |
| `lengths`      | <tt>Optional[Ints1d]</tt> | Sequence lengths, introduces padding around sequences.            |
| **RETURNS**    | <tt>Floats2d</tt>         | The created sequence containing preceding and succeeding vectors. |

### Ops.backprop_seq2col {#backprop_seq2col tag="method"}

<inline-list>

- **default:** <i name="yes"></i> (`nW=1` only)
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

The reverse/backward operation of the `seq2col` function: calculate the gradient
of the original `(M, N)` sequence, as a function of the gradient of the output
`(M, N*(nW*2+1))` sequence.

| Argument       | Type                      | Description                                            |
| -------------- | ------------------------- | ------------------------------------------------------ |
| `dY`           | <tt>Floats2d</tt>         | Gradient of the output sequence.                       |
| `nW`           | <tt>int</tt>              | The window size.                                       |
| _keyword-only_ |                           |                                                        |
| `lengths`      | <tt>Optional[Ints1d]</tt> | Sequence lengths, introduces padding around sequences. |
| **RETURNS**    | <tt>Floats2d</tt>         | Gradient of the original sequence.                     |

### Ops.gemm {#gemm tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Perform General Matrix Multiplication (GeMM) and optionally store the result in
the specified output variable.

| Argument    | Type                        | Description                                                   |
| ----------- | --------------------------- | ------------------------------------------------------------- |
| `x`         | <tt>Floats2d</tt>           | First array.                                                  |
| `y`         | <tt>Floats2d</tt>           | Second array.                                                 |
| `out`       | <tt>Optional[Floats2d]</tt> | Variable to store the result of the matrix multiplication in. |
| `trans1`    | <tt>bool</tt>               | Whether or not to transpose array `x`.                        |
| `trans2`    | <tt>bool</tt>               | Whether or not to transpose array `y`.                        |
| **RETURNS** | <tt>Floats2d</tt>           | The result of the matrix multiplication.                      |

### Ops.affine {#affine tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Apply a weights layer and a bias to some inputs, i.e. `Y = X @ W.T + b`.

| Argument    | Type              | Description      |
| ----------- | ----------------- | ---------------- |
| `X`         | <tt>Floats2d</tt> | The inputs.      |
| `W`         | <tt>Floats2d</tt> | The weights.     |
| `b`         | <tt>Floats1d</tt> | The bias vector. |
| **RETURNS** | <tt>Floats2d</tt> | The output.      |

### Ops.flatten {#flatten tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Flatten a list of arrays into one large array.

| Argument        | Type                       | Description                                                   |
| --------------- | -------------------------- | ------------------------------------------------------------- |
| `X`             | <tt>Sequence[ArrayXd]</tt> | The original list of arrays.                                  |
| `dtype`         | <tt>Optional[DTypes]</tt>  | The data type to cast the resulting array in.                 |
| `pad`           | <tt>int</tt>               | The number of zeros to add as padding to `X` (default 0).     |
| `ndim_if_empty` | <tt>int</tt>               | The dimension of the output result if `X` is `None` or empty. |
| **RETURNS**     | <tt>ArrayXd</tt>           | One large array storing all original information.             |

### Ops.unflatten {#unflatten tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

The reverse/backward operation of the `flatten` function: unflatten a large
array into a list of arrays according to the given lengths.

| Argument    | Type                   | Description                                                           |
| ----------- | ---------------------- | --------------------------------------------------------------------- |
| `X`         | <tt>ArrayXd</tt>       | The flattened array.                                                  |
| `lengths`   | <tt>Ints1d</tt>        | The lengths of the original arrays before they were flattened.        |
| `pad`       | <tt>int</tt>           | The padding that was applied during the `flatten` step (default 0).   |
| **RETURNS** | <tt>List[ArrayXd]</tt> | A list of arrays storing the same information as the flattened array. |

### Ops.pad {#pad tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Perform padding on a list of arrays so that they each have the same length, by
taking the maximum dimension across each axis. This only works on non-empty
sequences with the same `ndim` and `dtype`.

| Argument    | Type                   | Description                                                                                      |
| ----------- | ---------------------- | ------------------------------------------------------------------------------------------------ |
| `seqs`      | <tt>List[Array2d]</tt> | The sequences to pad.                                                                            |
| `round_to`  | <tt>int</tt>           | Round the length to nearest bucket (helps on GPU, to make similar array sizes). Defaults to `1`. |
| **RETURNS** | <tt>Array3d</tt>       | The padded sequences, stored in one array.                                                       |

### Ops.unpad {#unpad tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

The reverse/backward operation of the `pad` function: transform an array back
into a list of arrays, each with their original length.

| Argument    | Type                   | Description                                     |
| ----------- | ---------------------- | ----------------------------------------------- |
| `padded`    | <tt>ArrayXd</tt>       | The padded sequences, stored in one array.      |
| `lengths`   | <tt>List[int]</tt>     | The original lengths of the unpadded sequences. |
| **RETURNS** | <tt>List[ArrayXd]</tt> | The unpadded sequences.                         |

### Ops.list2padded {#list2padded tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Pack a sequence of two-dimensional arrays into a
[`Padded`](/docs/api-types#padded) datatype.

| Argument    | Type                   | Description            |
| ----------- | ---------------------- | ---------------------- |
| `seqs`      | <tt>List[Array2d]</tt> | The sequences to pack. |
| **RETURNS** | <tt>Padded</tt>        | The packed arrays.     |

### Ops.padded2list {#padded2list tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Unpack a [`Padded`](/docs/api-types#padded) datatype to a list of
two-dimensional arrays.

| Argument    | Type                   | Description             |
| ----------- | ---------------------- | ----------------------- |
| `padded`    | <tt>Padded</tt>        | The object to unpack.   |
| **RETURNS** | <tt>List[Array2d]</tt> | The unpacked sequences. |

### Ops.get_dropout_mask {#get_dropout_mask tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Create a random mask for applying dropout, with a certain percent of the mask
(defined by `drop`) will contain zeros. The neurons at those positions will be
deactivated during training, resulting in a more robust network and less
overfitting.

| Argument    | Type                     | Description                                                 |
| ----------- | ------------------------ | ----------------------------------------------------------- |
| `shape`     | <tt>Shape</tt>           | The input shape.                                            |
| `drop`      | <tt>Optional[float]</tt> | The dropout rate.                                           |
| **RETURNS** | <tt>Floats</tt>          | A mask specifying a 0 where a neuron should be deactivated. |

### Ops.alloc {#alloc tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** default

</inline-list>

Allocate an array of a certain shape. If possible, you should always use the
**type-specific methods** listed below, as they make the code more readable and
allow more sophisticated static [type checking](/docs/usage-type-checking) of
the inputs and outputs.

| Argument       | Type             | Description                                  |
| -------------- | ---------------- | -------------------------------------------- |
| `shape`        | <tt>Shape</tt>   | The shape.                                   |
| _keyword-only_ |                  |                                              |
| `dtype`        | <tt>DTypes</tt>  | The data type (default: `float32`).          |
| `zeros`        | <tt>bool</tt>    | Fill the array with zeros (default: `True`). |
| **RETURNS**    | <tt>ArrayXd</tt> | An array of the correct shape and data type. |

### Ops.cblas {#cblas tag="method"}

<inline-list>

- **default:** <i name="no"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="no"></i>

</inline-list>

Get a table of C BLAS functions usable in Cython `cdef nogil` functions. This
method does not take any arguments.

<infobox variant="warning">

This method is only supported by `NumpyOps`. A `NotImplementedError` exception
is raised when calling this method on `Ops` or `CupyOps`.

</infobox>

### Ops.to_numpy {#to_numpy tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** <i name="yes"></i>

</inline-list>

Convert the array to a numpy array.

| Argument       | Type                   | Description                                                                                                                                                      |
| -------------- | ---------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `data`         | <tt>ArrayXd</tt>       | The array.                                                                                                                                                       |
| _keyword-only_ |                        |                                                                                                                                                                  |
| `byte_order`   | <tt>Optional[str]</tt> | The [new byte order](https://numpy.org/doc/stable/reference/generated/numpy.dtype.newbyteorder.html), `None` preserves the current byte order (default: `None`). |
| **RETURNS**    | <tt>numpy.ndarray</tt> | A numpy array with the specified byte order.                                                                                                                     |

#### Type-specific methods

<inline-list>

- **Floats:** `Ops.alloc_f`, `Ops.alloc1f`, `Ops.alloc2f`, `Ops.alloc3f`,
  `Ops.alloc4f`
- **Ints:** `Ops.alloc_i`, `Ops.alloc1i`, `Ops.alloc2i`, `Ops.alloc3i`,
  `Ops.alloc4i`

</inline-list>

Shortcuts to allocate an array of a certain shape and data type (`f` refers to
`float32` and `i` to `int32`). For instance, `Ops.alloc2f` will allocate an
two-dimensional array of floats.

```python
### Example
X = model.ops.alloc2f(10, 2)  # Floats2d
Y = model.ops.alloc1i(4)  # Ints1d
```

| Argument       | Type                                      | Description                                                                |
| -------------- | ----------------------------------------- | -------------------------------------------------------------------------- |
| `*shape`       | <tt>int</tt>                              | The shape, one positional argument per dimension.                          |
| _keyword-only_ |                                           |                                                                            |
| `dtype`        | <tt>DTypesInt</tt> / <tt>DTypesFloat</tt> | The data type (float type for float methods and int type for int methods). |
| `zeros`        | <tt>bool</tt>                             | Fill the array with zeros (default: `True`).                               |
| **RETURNS**    | <tt>ArrayXd</tt>                          | An array of the correct shape and data type.                               |

### Ops.reshape {#reshape tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Reshape an array and return an array containing the same data with the given
shape. If possible, you should always use the **type-specific methods** listed
below, as they make the code more readable and allow more sophisticated static
[type checking](/docs/usage-type-checking) of the inputs and outputs.

| Argument    | Type             | Description           |
| ----------- | ---------------- | --------------------- |
| `array`     | <tt>ArrayXd</tt> | The array to reshape. |
| `shape`     | <tt>Shape</tt>   | The shape.            |
| **RETURNS** | <tt>ArrayXd</tt> | The reshaped array.   |

#### Type-specific methods

<inline-list>

- **Floats:** `Ops.reshape_f`, `Ops.reshape1f`, `Ops.reshape2f`,
  `Ops.reshape3f`, `Ops.reshape4f`
- **Ints:** `Ops.reshape_i`, `Ops.reshape1i`, `Ops.reshape2i`, `Ops.reshape3i`,
  `Ops.reshape4i`

</inline-list>

Shortcuts to reshape an array of a certain shape and data type (`f` refers to
`float32` and `i` to `int32`). For instance, `reshape2f` can be used to reshape
an array of floats to a 2d-array of floats.

<infobox variant="warning">

Note that the data type-specific methods mostly exist for **static type checking
purposes**. They do **not** change the data type of the array. For example,
`Ops.reshape2f` expects an array of floats and expects to return an array of
floats – but it won't convert an array of ints to an array of floats. However,
using the specific method will tell the static type checker what array to
expect, and passing in an array that's _typed_ as an int array will result in a
type error.

</infobox>

```python
### Example {small="true"}
X = model.ops.reshape2f(X, 10, 2)  # Floats2d
Y = model.ops.reshape1i(Y, 4)  # Ints1d
```

| Argument    | Type             | Description                                                    |
| ----------- | ---------------- | -------------------------------------------------------------- |
| `array`     | <tt>ArrayXd</tt> | The array to reshape (of the same data type).                  |
| `*shape`    | <tt>int</tt>     | The shape, one positional argument per dimension.              |
| **RETURNS** | <tt>ArrayXd</tt> | The reshaped array (of the same data type as the input array). |

### Ops.asarray {#asarray tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Ensure a given array is of the correct type, e.g. `numpy.ndarray` for `NumpyOps`
or `cupy.ndarray` for `CupyOps`. If possible, you should always use the
**type-specific methods** listed below, as they make the code more readable and
allow more sophisticated static [type checking](/docs/usage-type-checking) of
the inputs and outputs.

| Argument       | Type                                                      | Description                                |
| -------------- | --------------------------------------------------------- | ------------------------------------------ |
| `data`         | <tt>Union[ArrayXd, Sequence[ArrayXd], Sequence[int]]</tt> | The original array.                        |
| _keyword-only_ |                                                           |                                            |
| `dtype`        | <tt>Optional[DTypes]</tt>                                 | The data type                              |
| **RETURNS**    | <tt>ArrayXd</tt>                                          | The array transformed to the correct type. |

### Type-specific methods

<inline-list>

- **Floats:** `Ops.asarray_f`, `Ops.asarray1f`, `Ops.asarray2f`,
  `Ops.asarray3f`, `Ops.asarray4f`
- **Ints:** `Ops.asarray_i`, `Ops.asarray1i`, `Ops.asarray2i`, `Ops.asarray3i`,
  `Ops.asarray4i`

</inline-list>

Shortcuts for specific dimensions and data types (`f` refers to `float32` and
`i` to `int32`). For instance, `Ops.asarray2f` will return a two-dimensional
array of floats.

```python
### Example
X = model.ops.asarray2f(X, 10, 2)  # Floats2d
Y = model.ops.asarray1i(Y, 4)  # Ints1d
```

| Argument       | Type                                      | Description                                                                |
| -------------- | ----------------------------------------- | -------------------------------------------------------------------------- |
| `*shape`       | <tt>int</tt>                              | The shape, one positional argument per dimension.                          |
| _keyword-only_ |                                           |                                                                            |
| `dtype`        | <tt>DTypesInt</tt> / <tt>DTypesFloat</tt> | The data type (float type for float methods and int type for int methods). |
| **RETURNS**    | <tt>ArrayXd</tt>                          | An array of the correct shape and data type, filled with zeros.            |

### Ops.as_contig {#as_contig tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Allow the backend to make a contiguous copy of an array. Implementations of
`Ops` do not have to make a copy or make it contiguous if that would not improve
efficiency for the execution engine.

| Argument       | Type                      | Description                                   |
| -------------- | ------------------------- | --------------------------------------------- |
| `data`         | <tt>ArrayXd</tt>          | The array.                                    |
| _keyword-only_ |                           |                                               |
| `dtype`        | <tt>Optional[DTypes]</tt> | The data type                                 |
| **RETURNS**    | <tt>ArrayXd</tt>          | An array with the same contents as the input. |

### Ops.unzip {#unzip tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Unzip a tuple of two arrays, transform them with `asarray` and return them as
two separate arrays.

| Argument    | Type                             | Description                                 |
| ----------- | -------------------------------- | ------------------------------------------- |
| `data`      | <tt>Tuple[ArrayXd, ArrayXd]      | The tuple of two arrays.                    |
| **RETURNS** | <tt>Tuple[ArrayXd, ArrayXd]</tt> | The two arrays, transformed with `asarray`. |

### Ops.sigmoid {#sigmoid tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Calculate the sigmoid function.

| Argument       | Type              | Description                                |
| -------------- | ----------------- | ------------------------------------------ |
| `X`            | <tt>FloatsXd</tt> | The input values.                          |
| _keyword-only_ |                   |                                            |
| `inplace`      | <tt>bool</tt>     | If `True`, the array is modified in place. |
| **RETURNS**    | <tt>FloatsXd</tt> | The output values, i.e. `S(X)`.            |

### Ops.dsigmoid {#dsigmoid tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Calculate the derivative of the `sigmoid` function.

| Argument       | Type              | Description                                |
| -------------- | ----------------- | ------------------------------------------ |
| `Y`            | <tt>FloatsXd</tt> | The input values.                          |
| _keyword-only_ |                   |                                            |
| `inplace`      | <tt>bool</tt>     | If `True`, the array is modified in place. |
| **RETURNS**    | <tt>FloatsXd</tt> | The output values, i.e. `dS(Y)`.           |

### Ops.dtanh {#dtanh tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Calculate the derivative of the `tanh` function.

| Argument       | Type              | Description                                |
| -------------- | ----------------- | ------------------------------------------ |
| `Y`            | <tt>FloatsXd</tt> | The input values.                          |
| _keyword-only_ |                   |                                            |
| `inplace`      | <tt>bool</tt>     | If `True`, the array is modified in place. |
| **RETURNS**    | <tt>FloatsXd</tt> | The output values, i.e. `dtanh(Y)`.        |

### Ops.softmax {#softmax tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Calculate the softmax function. The resulting array will sum up to 1.

| Argument       | Type              | Description                                            |
| -------------- | ----------------- | ------------------------------------------------------ |
| `x`            | <tt>FloatsXd</tt> | The input values.                                      |
| _keyword-only_ |                   |                                                        |
| `inplace`      | <tt>bool</tt>     | If `True`, the array is modified in place.             |
| `axis`         | <tt>int</tt>      | The dimension to normalize over.                       |
| `temperature`  | <tt>float</tt>    | The value to divide the unnormalized probabilities by. |
| **RETURNS**    | <tt>FloatsXd</tt> | The normalized output values.                          |

### Ops.backprop_softmax {#backprop_softmax tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

| Argument       | Type              | Description                                            |
| -------------- | ----------------- | ------------------------------------------------------ |
| `Y`            | <tt>FloatsXd</tt> | Output array.                                          |
| `dY`           | <tt>FloatsXd</tt> | Gradients of the output array.                         |
| _keyword-only_ |                   |                                                        |
| `axis`         | <tt>int</tt>      | The dimension that was normalized over.                |
| `temperature`  | <tt>float</tt>    | The value to divide the unnormalized probabilities by. |
| **RETURNS**    | <tt>FloatsXd</tt> | The gradients of the input array.                      |

### Ops.softmax_sequences {#softmax_sequences tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

| Argument       | Type              | Description                                |
| -------------- | ----------------- | ------------------------------------------ |
| `Xs`           | <tt>Floats2d</tt> | An 2d array of input sequences.            |
| `lengths`      | <tt>Ints1d</tt>   | The lengths of the input sequences.        |
| _keyword-only_ |                   |                                            |
| `inplace`      | <tt>bool</tt>     | If `True`, the array is modified in place. |
| `axis`         | <tt>int</tt>      | The dimension to normalize over.           |
| **RETURNS**    | <tt>Floats2d</tt> | The normalized output values.              |

### Ops.backprop_softmax_sequences {#backprop_softmax_sequences tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

The reverse/backward operation of the `softmax` function.

| Argument    | Type              | Description                           |
| ----------- | ----------------- | ------------------------------------- |
| `dY`        | <tt>Floats2d</tt> | Gradients of the output array.        |
| `Y`         | <tt>Floats2d</tt> | Output array.                         |
| `lengths`   | <tt>Ints1d</tt>   | The lengths of the input sequences.   |
| **RETURNS** | <tt>Floats2d</tt> | The gradients of the input sequences. |

### Ops.recurrent_lstm {#recurrent_lstm tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Encode a padded batch of inputs into a padded batch of outputs using an LSTM.

| Argument    | Type                                                          | Description                                                                                                                               |
| ----------- | ------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- |
| `W`         | <tt>Floats2d</tt>                                             | The weights, shaped `(nO * 4, nO + nI)`.                                                                                                  |
| `b`         | <tt>Floats1d</tt>                                             | The bias vector, shaped `(nO * 4,)`.                                                                                                      |
| `h_init`    | <tt>Floats1d</tt>                                             | Initial value for the previous hidden vector.                                                                                             |
| `c_init`    | <tt>Floats1d</tt>                                             | Initial value for the previous cell state.                                                                                                |
| `inputs`    | <tt>Floats3d</tt>                                             | A batch of inputs, shaped `(nL, nB, nI)`, where `nL` is the sequence length and `nB` is the batch size.                                   |
| `is_train`  | <tt>bool</tt>                                                 | Whether the model is running in a training context.                                                                                       |
| **RETURNS** | <tt>Tuple[Floats3d, Tuple[Floats3d, Floats3d, Floats3d]]</tt> | A tuple consisting of the outputs and the intermediate activations required for the backward pass. The outputs are shaped `(nL, nB, nO)`. |

### Ops.backprop_recurrent_lstm {#backprop_recurrent_lstm tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Compute the gradients for the `recurrent_lstm` operation via backpropagation.

| Argument    | Type                                                                    | Description                                                                                           |
| ----------- | ----------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------- |
| `dY`        | <tt>Floats3d</tt>                                                       | The gradient w.r.t. the outputs.                                                                      |
| `fwd_state` | <tt>Tuple[Floats3d, Floats3d, Floats3d]</tt>                            | The tuple of gates, cells and inputs, returned by the forward pass.                                   |
| `params`    | <tt>Tuple[Floats2d, Floats1d]</tt>                                      | A tuple of the weights and biases.                                                                    |
| **RETURNS** | <tt>Tuple[Floats3d, Tuple[Floats2d, Floats1d, Floats1d, Floats1d]]</tt> | The gradients for the inputs and parameters (the weights, biases, initial hiddens and initial cells). |

### Ops.maxout {#maxout tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

| Argument    | Type                             | Description                                                                     |
| ----------- | -------------------------------- | ------------------------------------------------------------------------------- |
| `X`         | <tt>Floats3d</tt>                | The inputs.                                                                     |
| **RETURNS** | <tt>Tuple[Floats2d, Ints2d]</tt> | The outputs and an array indicating which elements in the final axis were used. |

### Ops.backprop_maxout {#backprop_maxout tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

| Argument    | Type              | Description                                 |
| ----------- | ----------------- | ------------------------------------------- |
| `dY`        | <tt>Floats2d</tt> | Gradients of the output array.              |
| `which`     | <tt>Ints2d</tt>   | The positions selected in the forward pass. |
| `P`         | <tt>int</tt>      | The size of the final dimension.            |
| **RETURNS** | <tt>Floats3d</tt> | The gradient of the inputs.                 |

### Ops.relu {#relu tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

| Argument       | Type              | Description                                |
| -------------- | ----------------- | ------------------------------------------ |
| `X`            | <tt>Floats2d</tt> | The inputs.                                |
| _keyword-only_ |                   |                                            |
| `inplace`      | <tt>bool</tt>     | If `True`, the array is modified in place. |
| **RETURNS**    | <tt>Floats2d</tt> | The outputs.                               |

### Ops.backprop_relu {#relu tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

| Argument       | Type              | Description                                |
| -------------- | ----------------- | ------------------------------------------ |
| `dY`           | <tt>Floats2d</tt> | Gradients of the output array.             |
| `Y`            | <tt>Floats2d</tt> | The output from the forward pass.          |
| _keyword-only_ |                   |                                            |
| `inplace`      | <tt>bool</tt>     | If `True`, the array is modified in place. |
| **RETURNS**    | <tt>Floats2d</tt> | The gradient of the input.                 |

### Ops.mish {#mish tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Compute the Mish activation
([Misra, 2019](https://arxiv.org/pdf/1908.08681.pdf)).

| Argument    | Type              | Description                                     |
| ----------- | ----------------- | ----------------------------------------------- |
| `X`         | <tt>FloatsXd</tt> | The inputs.                                     |
| `threshold` | <tt>float</tt>    | Maximum value at which to apply the activation. |
| `inplace`   | <tt>bool</tt>     | Apply Mish to `X` in-place.                     |
| **RETURNS** | <tt>FloatsXd</tt> | The outputs.                                    |

### Ops.backprop_mish {#backprop_mish tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Backpropagate the Mish activation
([Misra, 2019](https://arxiv.org/pdf/1908.08681.pdf)).

| Argument    | Type              | Description                           |
| ----------- | ----------------- | ------------------------------------- |
| `dY`        | <tt>FloatsXd</tt> | Gradients of the output array.        |
| `X`         | <tt>FloatsXd</tt> | The inputs to the forward pass.       |
| `threshold` | <tt>float</tt>    | Threshold from the forward pass.      |
| `inplace`   | <tt>bool</tt>     | Apply Mish backprop to `dY` in-place. |
| **RETURNS** | <tt>FloatsXd</tt> | The gradient of the input.            |

### Ops.swish {#swish tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Swish [(Ramachandran et al., 2017)](https://arxiv.org/abs/1710.05941v2) is a
self-gating non-monotonic activation function similar to the [GELU](#gelu)
activation: whereas [GELU](#gelu) uses the CDF of the Gaussian distribution Φ
for self-gating `x * Φ(x)`, Swish uses the logistic CDF `x * σ(x)`. Sometimes
referred to as "SiLU" for "Sigmoid Linear Unit".

| Argument    | Type              | Description                                |
| ----------- | ----------------- | ------------------------------------------ |
| `X`         | <tt>FloatsXd</tt> | The inputs.                                |
| `inplace`   | <tt>bool</tt>     | If `True`, the array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The outputs.                               |

### Ops.backprop_swish {#backprop_swish tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Backpropagate the Swish activation
[(Ramachandran et al., 2017)](https://arxiv.org/abs/1710.05941v2).

| Argument    | Type              | Description                                     |
| ----------- | ----------------- | ----------------------------------------------- |
| `dY`        | <tt>FloatsXd</tt> | Gradients of the output array.                  |
| `X`         | <tt>FloatsXd</tt> | The inputs to the forward pass.                 |
| `Y`         | <tt>FloatsXd</tt> | The outputs to the forward pass.                |
| `inplace`   | <tt>bool</tt>     | If `True`, the `dY` array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The gradient of the input.                      |

### Ops.dish {#dish tag="method" new="8.1.1"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Dish or "Daniël's Swish-like activation" is an activation function with a
non-monotinic shape similar to [GELU](#gelu), [Swish](#swish) and [Mish](#mish).
However, Dish does not rely on elementary functions like `exp` or `erf`, making
it much
[faster to compute](https://twitter.com/danieldekok/status/1484898130441166853)
in most cases.

| Argument    | Type              | Description                                |
| ----------- | ----------------- | ------------------------------------------ |
| `X`         | <tt>FloatsXd</tt> | The inputs.                                |
| `inplace`   | <tt>bool</tt>     | If `True`, the array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The outputs.                               |

### Ops.backprop_dish {#backprop_dish tag="method" new="8.1.1"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Backpropagate the Dish activation.

| Argument    | Type              | Description                                     |
| ----------- | ----------------- | ----------------------------------------------- |
| `dY`        | <tt>FloatsXd</tt> | Gradients of the output array.                  |
| `X`         | <tt>FloatsXd</tt> | The inputs to the forward pass.                 |
| `inplace`   | <tt>bool</tt>     | If `True`, the `dY` array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The gradient of the input.                      |

### Ops.gelu {#gelu tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

GELU or "Gaussian Error Linear Unit"
[(Hendrycks and Gimpel, 2016)](https://arxiv.org/abs/1606.08415) is a
self-gating non-monotonic activation function similar to the [Swish](#swish)
activation: whereas [GELU](#gelu) uses the CDF of the Gaussian distribution Φ
for self-gating `x * Φ(x)` the Swish activation uses the logistic CDF σ and
computes `x * σ(x)`. Various approximations exist, but `thinc` implements the
exact GELU. The use of GELU is popular within transformer feed-forward blocks.

| Argument    | Type              | Description                                |
| ----------- | ----------------- | ------------------------------------------ |
| `X`         | <tt>FloatsXd</tt> | The inputs.                                |
| `inplace`   | <tt>bool</tt>     | If `True`, the array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The outputs.                               |

### Ops.backprop_gelu {#backprop_gelu tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Backpropagate the GELU activation
[(Hendrycks and Gimpel, 2016)](https://arxiv.org/abs/1606.08415).

| Argument    | Type              | Description                                     |
| ----------- | ----------------- | ----------------------------------------------- |
| `dY`        | <tt>FloatsXd</tt> | Gradients of the output array.                  |
| `X`         | <tt>FloatsXd</tt> | The inputs to the forward pass.                 |
| `inplace`   | <tt>bool</tt>     | If `True`, the `dY` array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The gradient of the input.                      |

### Ops.relu_k {#relu_k tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

ReLU activation function with the maximum value clipped at `k`. A common choice
is `k=6` introduced for convolutional deep belief networks
[(Krizhevsky, 2010)](https://www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf).
The resulting function `relu6` is commonly used in low-precision scenarios.

| Argument    | Type              | Description                                |
| ----------- | ----------------- | ------------------------------------------ |
| `X`         | <tt>FloatsXd</tt> | The inputs.                                |
| `inplace`   | <tt>bool</tt>     | If `True`, the array is modified in place. |
| `k`         | <tt>float</tt>    | Maximum value (default: 6.0).              |
| **RETURNS** | <tt>FloatsXd</tt> | The outputs.                               |

### Ops.backprop_relu_k {#backprop_relu_k tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Backpropagate the ReLU-k activation.

| Argument    | Type              | Description                                     |
| ----------- | ----------------- | ----------------------------------------------- |
| `dY`        | <tt>FloatsXd</tt> | Gradients of the output array.                  |
| `X`         | <tt>FloatsXd</tt> | The inputs to the forward pass.                 |
| `inplace`   | <tt>bool</tt>     | If `True`, the `dY` array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The gradient of the input.                      |

### Ops.hard_sigmoid {#hard_sigmoid tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

The hard sigmoid activation function is a fast linear approximation of the
sigmoid activation, defined as `max(0, min(1, x * 0.2 + 0.5))`.

| Argument    | Type              | Description                                |
| ----------- | ----------------- | ------------------------------------------ |
| `X`         | <tt>FloatsXd</tt> | The inputs.                                |
| `inplace`   | <tt>bool</tt>     | If `True`, the array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The outputs.                               |

### Ops.backprop_hard_sigmoid {#backprop_hard_sigmoid tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Backpropagate the hard sigmoid activation.

| Argument    | Type              | Description                                     |
| ----------- | ----------------- | ----------------------------------------------- |
| `dY`        | <tt>FloatsXd</tt> | Gradients of the output array.                  |
| `X`         | <tt>FloatsXd</tt> | The inputs to the forward pass.                 |
| `inplace`   | <tt>bool</tt>     | If `True`, the `dY` array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The gradient of the input.                      |

### Ops.hard_tanh {#hard_tanh tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

The hard tanh activation function is a fast linear approximation of tanh,
defined as `max(-1, min(1, x))`.

| Argument    | Type              | Description                                |
| ----------- | ----------------- | ------------------------------------------ |
| `X`         | <tt>FloatsXd</tt> | The inputs.                                |
| `inplace`   | <tt>bool</tt>     | If `True`, the array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The outputs.                               |

### Ops.backprop_hard_tanh {#backprop_hard_tanh tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Backpropagate the hard tanh activation.

| Argument    | Type              | Description                                     |
| ----------- | ----------------- | ----------------------------------------------- |
| `dY`        | <tt>FloatsXd</tt> | Gradients of the output array.                  |
| `X`         | <tt>FloatsXd</tt> | The inputs to the forward pass.                 |
| `inplace`   | <tt>bool</tt>     | If `True`, the `dY` array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The gradient of the input.                      |

### Ops.clipped_linear {#clipped_linear tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Flexible clipped linear activation function of the form
`max(min_value, min(max_value, x * slope + offset))`. It is used to implement
the [`relu_k`](#reluk), [`hard_sigmoid`](#hard_sigmoid), and
[`hard_tanh`](#hard_tanh) methods.

| Argument    | Type              | Description                                                               |
| ----------- | ----------------- | ------------------------------------------------------------------------- |
| `X`         | <tt>FloatsXd</tt> | The inputs.                                                               |
| `inplace`   | <tt>bool</tt>     | If `True`, the array is modified in place.                                |
| `slope`     | <tt>float</tt>    | The slope of the linear function: `input * slope`.                        |
| `offset`    | <tt>float</tt>    | The offset or intercept of the linear function: `input * slope + offset`. |
| `min_val`   | <tt>float</tt>    | Minimum value to clip to.                                                 |
| `max_val`   | <tt>float</tt>    | Maximum value to clip to.                                                 |
| **RETURNS** | <tt>FloatsXd</tt> | The outputs.                                                              |

### Ops.backprop_clipped_linear {#backprop_clipped_linear tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Backpropagate the clipped linear activation.

| Argument    | Type              | Description                                                               |
| ----------- | ----------------- | ------------------------------------------------------------------------- |
| `dY`        | <tt>FloatsXd</tt> | Gradients of the output array.                                            |
| `X`         | <tt>FloatsXd</tt> | The inputs to the forward pass.                                           |
| `slope`     | <tt>float</tt>    | The slope of the linear function: `input * slope`.                        |
| `offset`    | <tt>float</tt>    | The offset or intercept of the linear function: `input * slope + offset`. |
| `min_val`   | <tt>float</tt>    | Minimum value to clip to.                                                 |
| `max_val`   | <tt>float</tt>    | Maximum value to clip to.                                                 |
| `inplace`   | <tt>bool</tt>     | If `True`, the `dY` array is modified in place.                           |
| **RETURNS** | <tt>FloatsXd</tt> | The gradient of the input.                                                |

### Ops.hard_swish {#hard_swish tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

The hard Swish activation function is a fast linear approximation of Swish:
`x * hard_sigmoid(x)`.

| Argument    | Type              | Description                                |
| ----------- | ----------------- | ------------------------------------------ |
| `X`         | <tt>FloatsXd</tt> | The inputs.                                |
| `inplace`   | <tt>bool</tt>     | If `True`, the array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The outputs.                               |

### Ops.backprop_hard_swish {#backprop_hard_swish tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Backpropagate the hard Swish activation.

| Argument    | Type              | Description                                     |
| ----------- | ----------------- | ----------------------------------------------- |
| `dY`        | <tt>FloatsXd</tt> | Gradients of the output array.                  |
| `X`         | <tt>FloatsXd</tt> | The inputs to the forward pass.                 |
| `inplace`   | <tt>bool</tt>     | If `True`, the `dY` array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The gradient of the input.                      |

### Ops.hard_swish_mobilenet {#hard_swish_mobilenet tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

A variant of the fast hard Swish activation function used in `MobileNetV3`
[(Howard et al., 2019)](https://arxiv.org/abs/1905.02244), defined as
`x * (relu6(x + 3) / 6)`.

| Argument    | Type              | Description                                |
| ----------- | ----------------- | ------------------------------------------ |
| `X`         | <tt>FloatsXd</tt> | The inputs.                                |
| `inplace`   | <tt>bool</tt>     | If `True`, the array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The outputs.                               |

### Ops.backprop_hard_swish_mobilenet {#backprop_hard_swish_mobilenet tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="no"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Backpropagate the hard Swish MobileNet activation.

| Argument    | Type              | Description                                     |
| ----------- | ----------------- | ----------------------------------------------- |
| `dY`        | <tt>FloatsXd</tt> | Gradients of the output array.                  |
| `X`         | <tt>FloatsXd</tt> | The inputs to the forward pass.                 |
| `inplace`   | <tt>bool</tt>     | If `True`, the `dY` array is modified in place. |
| **RETURNS** | <tt>FloatsXd</tt> | The gradient of the input.                      |

### Ops.reduce_first {#reduce_first tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Perform sequence-wise first pooling for data in the ragged format.

- Zero-length sequences are not allowed. A `ValueError` is raised if any element
  in `lengths` is zero.
- Batch and hidden dimensions can have a size of zero. In these cases the
  corresponding dimensions in the output also have a size of zero.

| Argument    | Type                            | Description                                                           |
| ----------- | ------------------------------- | --------------------------------------------------------------------- |
| `X`         | <tt>Floats2d</tt>               | The concatenated sequences.                                           |
| `lengths`   | <tt>Ints1d</tt>                 | The sequence lengths.                                                 |
| **RETURNS** | <tt>Tuple[Floats2d,Ints1d]</tt> | The first vector of each sequence and the sequence start/end indices. |

### Ops.backprop_reduce_first {#backprop_reduce_first tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Backpropagate the `reduce_first` operation.

| Argument      | Type              | Description                                 |
| ------------- | ----------------- | ------------------------------------------- |
| `d_firsts`    | <tt>Floats2d</tt> | The gradient of the outputs.                |
| `starts_ends` | <tt>Ints1d</tt>   | The sequence start/end indices.             |
| **RETURNS**   | <tt>Floats2d</tt> | The gradient of the concatenated sequences. |

### Ops.reduce_last {#reduce_last tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Perform sequence-wise last pooling for data in the ragged format.

- Zero-length sequences are not allowed. A `ValueError` is raised if any element
  in `lengths` is zero.
- Batch and hidden dimensions can have a size of zero. In these cases the
  corresponding dimensions in the output also have a size of zero.

| Argument    | Type                            | Description                                                                     |
| ----------- | ------------------------------- | ------------------------------------------------------------------------------- |
| `X`         | <tt>Floats2d</tt>               | The concatenated sequences.                                                     |
| `lengths`   | <tt>Ints1d</tt>                 | The sequence lengths.                                                           |
| **RETURNS** | <tt>Tuple[Floats2d,Ints1d]</tt> | The last vector of each sequence and the indices of the last sequence elements. |

### Ops.backprop_reduce_last {#backprop_reduce_last tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** default
- **cupy:** default

</inline-list>

Backpropagate the `reduce_last` operation.

| Argument    | Type              | Description                                 |
| ----------- | ----------------- | ------------------------------------------- |
| `d_lasts`   | <tt>Floats2d</tt> | The gradient of the outputs.                |
| `lasts`     | <tt>Ints1d</tt>   | Indices of the last sequence elements.      |
| **RETURNS** | <tt>Floats2d</tt> | The gradient of the concatenated sequences. |

### Ops.reduce_sum {#reduce_sum tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Perform sequence-wise summation for data in the ragged format.

- Zero-length sequences are reduced to all-zero vectors.
- Batch and hidden dimensions can have a size of zero. In these cases the
  corresponding dimensions in the output also have a size of zero.

| Argument    | Type              | Description                   |
| ----------- | ----------------- | ----------------------------- |
| `X`         | <tt>Floats2d</tt> | The concatenated sequences.   |
| `lengths`   | <tt>Ints1d</tt>   | The sequence lengths.         |
| **RETURNS** | <tt>Floats2d</tt> | The sequence-wise summations. |

### Ops.backprop_reduce_sum {#backprop_reduce_sum tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Backpropagate the `reduce_sum` operation.

| Argument    | Type              | Description                                 |
| ----------- | ----------------- | ------------------------------------------- |
| `d_sums`    | <tt>Floats2d</tt> | The gradient of the outputs.                |
| `lengths`   | <tt>Ints1d</tt>   | The sequence lengths.                       |
| **RETURNS** | <tt>Floats2d</tt> | The gradient of the concatenated sequences. |

### Ops.reduce_mean {#reduce_mean tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Perform sequence-wise averaging for data in the ragged format.

- Zero-length sequences are reduced to all-zero vectors.
- Batch and hidden dimensions can have a size of zero. In these cases the
  corresponding dimensions in the output also have a size of zero.

| Argument    | Type              | Description                 |
| ----------- | ----------------- | --------------------------- |
| `X`         | <tt>Floats2d</tt> | The concatenated sequences. |
| `lengths`   | <tt>Ints1d</tt>   | The sequence lengths.       |
| **RETURNS** | <tt>Floats2d</tt> | The sequence-wise averages. |

### Ops.backprop_reduce_mean {#backprop_reduce_mean tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Backpropagate the `reduce_mean` operation.

| Argument    | Type              | Description                                 |
| ----------- | ----------------- | ------------------------------------------- |
| `d_means`   | <tt>Floats2d</tt> | The gradient of the outputs.                |
| `lengths`   | <tt>Ints1d</tt>   | The sequence lengths.                       |
| **RETURNS** | <tt>Floats2d</tt> | The gradient of the concatenated sequences. |

### Ops.reduce_max {#reduce_max tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Perform sequence-wise max pooling for data in the ragged format. Zero-length
sequences are not allowed.

- Zero-length sequences are not allowed. A `ValueError` is raised if any element
  in `lengths` is zero.
- Batch and hidden dimensions can have a size of zero. In these cases the
  corresponding dimensions in the output also have a size of zero.

| Argument    | Type                             | Description                 |
| ----------- | -------------------------------- | --------------------------- |
| `X`         | <tt>Floats2d</tt>                | The concatenated sequences. |
| `lengths`   | <tt>Ints1d</tt>                  | The sequence lengths.       |
| **RETURNS** | <tt>Tuple[Floats2d, Ints2d]</tt> | The sequence-wise maximums. |

### Ops.backprop_reduce_max {#backprop_reduce_max tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Backpropagate the `reduce_max` operation.

| Argument    | Type              | Description                                 |
| ----------- | ----------------- | ------------------------------------------- |
| `d_maxes`   | <tt>Floats2d</tt> | The gradient of the outputs.                |
| `which`     | <tt>Ints2d</tt>   | The indices selected.                       |
| `lengths`   | <tt>Ints1d</tt>   | The sequence lengths.                       |
| **RETURNS** | <tt>Floats2d</tt> | The gradient of the concatenated sequences. |

### Ops.hash {#hash tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Hash a sequence of 64-bit keys into a table with four 32-bit keys, using
`murmurhash3`.

| Argument    | Type            | Description                         |
| ----------- | --------------- | ----------------------------------- |
| `ids`       | <tt>Ints1d</tt> | The keys, 64-bit unsigned integers. |
| `seed`      | <tt>int</tt>    | The hashing seed.                   |
| **RETURNS** | <tt>Ints2d</tt> | The hashes.                         |

### Ops.ngrams {#ngrams tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** default

</inline-list>

Create hashed ngram features.

| Argument    | Type            | Description                                |
| ----------- | --------------- | ------------------------------------------ |
| `n`         | <tt>int</tt>    | The window to calculate each feature over. |
| `keys`      | <tt>Ints1d</tt> | The input sequence.                        |
| **RETURNS** | <tt>Ints1d</tt> | The hashed ngrams.                         |

### Ops.gather_add {#gather_add tag="method" new="8.1"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Gather rows from `table` with shape `(T, O)` using array `indices` with shape
`(B, K)`, then sum the resulting array with shape `(B, K, O)` over the `K` axis.

| Argument    | Type              | Description             |
| ----------- | ----------------- | ----------------------- |
| `table`     | <tt>Floats2d</tt> | The array to increment. |
| `indices`   | <tt>Ints2d</tt>   | The indices to use.     |
| **RETURNS** | <tt>Floats2d</tt> | The summed rows.        |

### Ops.scatter_add {#scatter_add tag="method"}

<inline-list>

- **default:** <i name="yes"></i>
- **numpy:** <i name="yes"></i>
- **cupy:** <i name="yes"></i>

</inline-list>

Increment entries in the array out using the indices in `ids` and the values in
`inputs`.

| Argument    | Type              | Description             |
| ----------- | ----------------- | ----------------------- |
| `table`     | <tt>FloatsXd</tt> | The array to increment. |
| `indices`   | <tt>IntsXd</tt>   | The indices to use.     |
| `values`    | <tt>FloatsXd</tt> | The inputs.             |
| **RETURNS** | <tt>FloatsXd</tt> | The incremented array.  |

---

## Utilities {#util}

### get_ops {#get_ops tag="function"}

Get a backend object using a string name.

```python
### Example
from thinc.api import get_ops

numpy_ops = get_ops("numpy")
```

| Argument    | Type         | Description                                           |
| ----------- | ------------ | ----------------------------------------------------- |
| `ops`       | <tt>str</tt> | `"numpy"`, `"apple"`, `"cupy"` or `"mps"`.            |
| `**kwargs`  |              | Optional arguments passed to [`Ops.__init__`](#init). |
| **RETURNS** | <tt>Ops</tt> | The backend object.                                   |

### use_ops {#use_ops tag="contextmanager"}

Change the backend to execute with for the scope of the block.

```python
### Example
from thinc.api import use_ops, get_current_ops

with use_ops("cupy"):
    current_ops = get_current_ops()
    assert current_ops.name == "cupy"
```

| Argument   | Type         | Description                                           |
| ---------- | ------------ | ----------------------------------------------------- |
| `ops`      | <tt>str</tt> | `"numpy"`, `"apple"`, `"cupy"` or `"mps"`.            |
| `**kwargs` |              | Optional arguments passed to [`Ops.__init__`](#init). |

### get_current_ops {#get_current_ops tag="function"}

Get the current backend object.

| Argument    | Type         | Description                 |
| ----------- | ------------ | --------------------------- |
| **RETURNS** | <tt>Ops</tt> | The current backend object. |

### set_current_ops {#set_current_ops tag="function"}

Set the current backend object.

| Argument | Type         | Description         |
| -------- | ------------ | ------------------- |
| `ops`    | <tt>Ops</tt> | The backend object. |

### set_gpu_allocator {#set_gpu_allocator tag="function"}

Set the CuPy GPU memory allocator.

| Argument    | Type         | Description                           |
| ----------- | ------------ | ------------------------------------- |
| `allocator` | <tt>str</tt> | Either `"pytorch"` or `"tensorflow"`. |

```python
### Example
from thinc.api set_gpu_allocator

set_gpu_allocator("pytorch")
```