File: api-layers.md

package info (click to toggle)
python-thinc 9.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,896 kB
  • sloc: python: 17,122; javascript: 1,559; ansic: 342; makefile: 15; sh: 13
file content (1895 lines) | stat: -rw-r--r-- 104,415 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
---
title: Layers
teaser: Weights layers, transforms, combinators and wrappers
next: /docs/api-optimizers
---

This page describes functions for defining your model. Each layer is implemented
in its own module in
[`thinc.layers`](https://github.com/explosion/thinc/blob/master/thinc/layers)
and can be imported from `thinc.api`. Most layer files define two public
functions: a **creation function** that returns a [`Model`](/docs/api-model)
instance, and a **forward function** that performs the computation.

|                                            |                                                                                  |
| ------------------------------------------ | -------------------------------------------------------------------------------- |
| [**Weights layers**](#weights-layers)      | Layers that use an internal weights matrix for their computations.               |
| [**Reduction operations**](#reduction-ops) | Layers that perform rank reductions, e.g. pooling from word to sentence vectors. |
| [**Combinators**](#combinators)            | Layers that combine two or more existing layers.                                 |
| [**Data type transfers**](#transfers)      | Layers that transform data to different types.                                   |
| [**Wrappers**](#wrappers)                  | Wrapper layers for other libraries like PyTorch and TensorFlow.                  |

## Weights layers {#weights-layers}

### CauchySimilarity {#cauchysimilarity tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Tuple[Floats2d, Floats2d]</ndarray>
- **Output:** <ndarray shape="batch_size">Floats1d</ndarray>
- **Parameters:** <ndarray shape="1, nI">W</ndarray>

</inline-list>

Compare input vectors according to the Cauchy similarity function proposed by
[Chen (2013)](https://tspace.library.utoronto.ca/bitstream/1807/43097/3/Liu_Chen_201311_MASc_thesis.pdf).
Primarily used within [`siamese`](#siamese) neural networks.

| Argument    | Type                                                | Description                    |
| ----------- | --------------------------------------------------- | ------------------------------ |
| `nI`        | <tt>Optional[int]</tt>                              | The size of the input vectors. |
| **RETURNS** | <tt>Model[Tuple[Floats2d, Floats2d], Floats1d]</tt> | The created similarity layer.  |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/cauchysimilarity.py
```

### Dish {#dish tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A dense layer with the Dish activation function. Dish or "Daniël's Swish-like
activation" is an activation function with a non-monotinic shape similar to
[GELU](#gelu), [Swish](#swish) and [Mish](#mish). However, Dish does not rely on
elementary functions like `exp` or `erf`, making it much
[faster to compute](https://twitter.com/danieldekok/status/1484898130441166853)
in most cases.

| Argument       | Type                               | Description                                                                                                                            |
| -------------- | ---------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------- |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                                        |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                                         |
| _keyword-only_ |                                    |                                                                                                                                        |
| `init_W`       | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`he_normal_init`](/docs/api-initializers#he_normal_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.              |
| `dropout`      | <tt>Optional[float]</tt>           | Dropout rate to avoid overfitting.                                                                                                     |
| `normalize`    | <tt>bool</tt>                      | Whether or not to apply [layer normalization](#layernorm). Defaults to `False`.                                                        |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created dense layer.                                                                                                               |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/dish.py
```

### Dropout {#dropout tag="function"}

<inline-list>

- **Input:** <ndarray>ArrayXd</ndarray> / <ndarray>Sequence[ArrayXd]</ndarray> /
  <ndarray>Ragged</ndarray> / <ndarray>Padded</ndarray>
- **Output:** <ndarray>ArrayXd</ndarray> / <ndarray>Sequence[ArrayXd]</ndarray>
  / <ndarray>Ragged</ndarray> / <ndarray>Padded</ndarray>
- **Attrs:** `dropout_rate` <tt>float</tt>

</inline-list>

Helps prevent overfitting by adding a random distortion to the input data during
training. Specifically, cells of the input are zeroed with probability
determined by the `dropout_rate` argument. Cells which are not zeroed are
rescaled by `1-rate`. When not in training mode, the distortion is disabled (see
[Hinton et al., 2012](https://arxiv.org/abs/1207.0580)).

```python
### Example
from thinc.api import chain, Linear, Dropout
model = chain(Linear(10, 2), Dropout(0.2))
Y, backprop = model(X, is_train=True)
# Configure dropout rate via the dropout_rate attribute.
for node in model.walk():
    if node.name == "dropout":
        node.attrs["dropout_rate"] = 0.5
```

| Argument       | Type                 | Description                                                                                                                             |
| -------------- | -------------------- | --------------------------------------------------------------------------------------------------------------------------------------- |
| `dropout_rate` | <tt>float</tt>       | The probability of zeroing the activations (default: 0). Higher dropout rates mean more distortion. Values around `0.2` are often good. |
| **RETURNS**    | <tt>Model[T, T]</tt> | The created dropout layer.                                                                                                              |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/dropout.py
```

### Embed {#embed tag="function"}

<inline-list>

- **Input:** <ndarray shape="n,">Union[Ints1d, Ints2d]</ndarray>
- **Output:** <ndarray shape="n, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nV, nO">E</ndarray>
- **Attrs:** `column` <tt>int</tt>, `dropout_rate` <tt>float</tt>

</inline-list>

Map integers to vectors, using a fixed-size lookup table. The input to the layer
should be a two-dimensional array of integers, one column of which the
embeddings table will slice as the indices.

| Argument       | Type                                            | Description                                                                                                                             |
| -------------- | ----------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------- |
| `nO`           | <tt>Optional[int]</tt>                          | The size of the output vectors.                                                                                                         |
| `nV`           | <tt>int</tt>                                    | Number of input vectors. Defaults to `1`.                                                                                               |
| _keyword-only_ |                                                 |                                                                                                                                         |
| `column`       | <tt>int</tt>                                    | The column to slice from the input, to get the indices.                                                                                 |
| `initializer`  | <tt>Optional[Callable]</tt>                     | A function to initialize the internal parameters. Defaults to [`uniform_init`](/docs/api-initializers#uniform_init) when set to `None`. |
| `dropout`      | <tt>Optional[float]</tt>                        | Dropout rate to avoid overfitting (default `None`).                                                                                     |
| **RETURNS**    | <tt>Model[Union[Ints1d, Ints2d], Floats2d]</tt> | The created embedding layer.                                                                                                            |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/embed.py
```

### HashEmbed {#hashembed tag="function"}

<inline-list>

- **Input:** <ndarray shape="n,">Union[Ints1d, Ints2d]</ndarray> /
- **Output:** <ndarray shape="n, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nV, nO">E</ndarray>
- **Attrs:** `seed` <tt>Optional[int]</tt>, `column` <tt>int</tt>,
  `dropout_rate` <tt>float</tt>

</inline-list>

An embedding layer that uses the "hashing trick" to map keys to distinct values.
The hashing trick involves hashing each key four times with distinct seeds, to
produce four likely differing values. Those values are modded into the table,
and the resulting vectors summed to produce a single result. Because it's
unlikely that two different keys will collide on all four "buckets", most
distinct keys will receive a distinct vector under this scheme, even when the
number of vectors in the table is very low.

| Argument       | Type                                            | Description                                                                                                                             |
| -------------- | ----------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------- |
| `nO`           | <tt>int</tt>                                    | The size of the output vectors.                                                                                                         |
| `nV`           | <tt>int</tt>                                    | Number of input vectors.                                                                                                                |
| _keyword-only_ |                                                 |                                                                                                                                         |
| `seed`         | <tt>Optional[int]</tt>                          | A seed to use for the hashing.                                                                                                          |
| `column`       | <tt>int</tt>                                    | The column to select features from.                                                                                                     |
| `initializer`  | <tt>Optional[Callable]</tt>                     | A function to initialize the internal parameters. Defaults to [`uniform_init`](/docs/api-initializers#uniform_init) when set to `None`. |
| `dropout`      | <tt>Optional[float]</tt>                        | Dropout rate to avoid overfitting (default `None`).                                                                                     |
| **RETURNS**    | <tt>Model[Union[Ints1d, Ints2d], Floats2d]</tt> | The created embedding layer.                                                                                                            |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/hashembed.py
```

### LayerNorm {#layernorm tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nI,">b</ndarray>,
  <ndarray shape="nI,">G</ndarray>

</inline-list>

Perform layer normalization on the inputs
([Ba et al., 2016](https://arxiv.org/abs/1607.06450)). This layer does not
change the dimensionality of the vectors.

| Argument    | Type                               | Description                      |
| ----------- | ---------------------------------- | -------------------------------- |
| `nI`        | <tt>Optional[int]</tt>             | The size of the input vectors.   |
| **RETURNS** | <tt>Model[Floats2d, Floats2d]</tt> | The created normalization layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/layernorm.py
```

### Linear {#linear tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

The `Linear` layer multiplies inputs by a weights matrix `W` and adds a bias
vector `b`. In PyTorch this is called a `Linear` layer, while Keras calls it a
`Dense` layer.

```python
### Example
from thinc.api import Linear

model = Linear(10, 5)
model.initialize()
Y = model.predict(model.ops.alloc2f(2, 5))
assert Y.shape == (2, 10)
```

| Argument       | Type                               | Description                                                                                                                   |
| -------------- | ---------------------------------- | ----------------------------------------------------------------------------------------------------------------------------- |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                               |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                                |
| _keyword-only_ |                                    |                                                                                                                               |
| `init_W`       | <tt>Callable</tt>                  | A function to initialize the weights matrix. Defaults to [`glorot_uniform_init`](/docs/api-initializers#glorot_uniform_init). |
| `init_b`       | <tt>Callable</tt>                  | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init).                        |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created `Linear` layer.                                                                                                   |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/linear.py
```

### Sigmoid {#sigmoid tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A linear (aka dense) layer, followed by a sigmoid activation. This is usually
used as an output layer for multi-label classification (in contrast to the
`Softmax` layer, which is used for problems where exactly one class is correct
per example.

| Argument    | Type                               | Description                      |
| ----------- | ---------------------------------- | -------------------------------- |
| `nOs`       | <tt>Tuple[int, ...]</tt>           | The sizes of the output vectors. |
| `nI`        | <tt>Optional[int]</tt>             | The size of the input vectors.   |
| **RETURNS** | <tt>Model[Floats2d, Floats2d]</tt> | The created sigmoid layer.       |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/sigmoid.py
```

### sigmoid_activation {#sigmoid_activation tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">FloatsXd</ndarray>
- **Output:** <ndarray shape="batch_size, nO">FloatsXd</ndarray>

</inline-list>

Apply the sigmoid logistic function as an activation to the inputs. This is
often used as an output activation for multi-label classification, because each
element of the output vectors will be between `0` and `1`.

| Argument    | Type                               | Description                             |
| ----------- | ---------------------------------- | --------------------------------------- |
| **RETURNS** | <tt>Model[Floats2d, Floats2d]</tt> | The created `sigmoid_activation` layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/sigmoid_activation.py
```

### LSTM and BiLSTM {#lstm tag="function"}

<inline-list>

- **Input:** <ndarray>Padded</ndarray>
- **Output:** <ndarray>Padded</ndarray>
- **Parameters:** `depth` <tt>int</tt>, `dropout` <tt>float</tt>

</inline-list>

An LSTM recurrent neural network. The BiLSTM is bidirectional: that is, each
layer concatenated a forward LSTM with an LSTM running in the reverse direction.
If you are able to install PyTorch, you should usually prefer to use the
`PyTorchLSTM` layer instead of Thinc's implementations, as PyTorch's LSTM
implementation is significantly faster.

| Argument       | Type                           | Description                                                                                                                                      |
| -------------- | ------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------ |
| `nO`           | <tt>Optional[int]</tt>         | The size of the output vectors.                                                                                                                  |
| `nI`           | <tt>Optional[int]</tt>         | The size of the input vectors.                                                                                                                   |
| _keyword-only_ |                                |                                                                                                                                                  |
| `bi`           | <tt>bool</tt>                  | Use BiLSTM.                                                                                                                                      |
| `depth`        | <tt>int</tt>                   | Number of layers (default `1`).                                                                                                                  |
| `dropout`      | <tt>float</tt>                 | Dropout rate to avoid overfitting (default `0`).                                                                                                 |
| `init_W`       | <tt>Optional[Callable]</tt>    | A function to initialize the weights matrix. Defaults to [`glorot_uniform_init`](/docs/api-initializers#glorot_uniform_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>    | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.                        |
| **RETURNS**    | <tt>Model[Padded, Padded]</tt> | The created LSTM layer(s).                                                                                                                       |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/lstm.py
```

### Maxout {#maxout tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO*nP">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO*nP, nI">W</ndarray>,
  <ndarray shape="nO*nP,">b</ndarray>

</inline-list>

A dense layer with a "maxout" activation
([Goodfellow et al, 2013](https://arxiv.org/abs/1302.4389)). Maxout layers
require a weights array of shape `(nO, nP, nI)` in order to compute outputs of
width `nO` given inputs of width `nI`. The extra multiple, `nP`, determines the
number of "pieces" that the piecewise-linear activation will consider.

| Argument       | Type                               | Description                                                                                                                                      |
| -------------- | ---------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                                                  |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                                                   |
| `nP`           | <tt>int</tt>                       | Number of maxout pieces (default: 3).                                                                                                            |
| _keyword-only_ |                                    |                                                                                                                                                  |
| `init_W`       | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`glorot_uniform_init`](/docs/api-initializers#glorot_uniform_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.                        |
| `dropout`      | <tt>Optional[float]</tt>           | Dropout rate to avoid overfitting.                                                                                                               |
| `normalize`    | <tt>bool</tt>                      | Whether or not to apply [layer normalization](#layernorm), (default: False).                                                                     |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created maxout layer.                                                                                                                        |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/maxout.py
```

### Mish {#mish tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A dense layer with Mish activation
([Misra, 2019](https://arxiv.org/pdf/1908.08681.pdf)).

| Argument       | Type                               | Description                                                                                                                                      |
| -------------- | ---------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                                                  |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                                                   |
| _keyword-only_ |                                    |                                                                                                                                                  |
| `init_W`       | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`glorot_uniform_init`](/docs/api-initializers#glorot_uniform_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.                        |
| `dropout`      | <tt>Optional[float]</tt>           | Dropout rate to avoid overfitting.                                                                                                               |
| `normalize`    | <tt>bool</tt>                      | Whether or not to apply [layer normalization](#layernorm), (default: False).                                                                     |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created dense layer.                                                                                                                         |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/mish.py
```

### Swish {#swish tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A dense layer with the Swish activation function
[(Ramachandran et al., 2017)](https://arxiv.org/abs/1710.05941v2). Swish is a
self-gating non-monotonic activation function similar to [`GELU`](#gelu):
whereas GELU uses the CDF of the Gaussian distribution Φ for self-gating
`x * Φ(x)` Swish uses the logistic CDF `x * σ(x)`. Sometimes referred to as
"SiLU" for "Sigmoid Linear Unit".

| Argument       | Type                               | Description                                                                                                                            |
| -------------- | ---------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------- |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                                        |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                                         |
| _keyword-only_ |                                    |                                                                                                                                        |
| `init_W`       | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`he_normal_init`](/docs/api-initializers#he_normal_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.              |
| `dropout`      | <tt>Optional[float]</tt>           | Dropout rate to avoid overfitting.                                                                                                     |
| `normalize`    | <tt>bool</tt>                      | Whether or not to apply [layer normalization](#layernorm). Defaults to `False`.                                                        |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created dense layer.                                                                                                               |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/swish.py
```

### Gelu {#gelu tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A dense layer with the GELU activation function
[(Hendrycks and Gimpel, 2016)](https://arxiv.org/abs/1606.08415). The GELU or
"Gaussian Error Linear Unit" is a self-gating non-monotonic activation function
similar to [Swish](#swish): whereas GELU uses the CDF of the Gaussian
distribution Φ for self-gating `x * Φ(x)` the Swish activation uses the logistic
CDF σ and computes `x * σ(x)`. Various approximations exist, but `thinc`
implements the exact GELU. The use of GELU is popular within transformer
feed-forward blocks.

| Argument       | Type                               | Description                                                                                                                            |
| -------------- | ---------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------- |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                                        |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                                         |
| _keyword-only_ |                                    |                                                                                                                                        |
| `init_W`       | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`he_normal_init`](/docs/api-initializers#he_normal_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.              |
| `dropout`      | <tt>Optional[float]</tt>           | Dropout rate to avoid overfitting.                                                                                                     |
| `normalize`    | <tt>bool</tt>                      | Whether or not to apply [layer normalization](#layernorm). Defaults to `False`.                                                        |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created dense layer.                                                                                                               |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/gelu.py
```

### ReluK {#reluk tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A dense layer with the ReLU activation function where the maximum value is
clipped at `k`. A common choice is `k=6` introduced for convolutional deep
belief networks
[(Krizhevsky, 2010)](https://www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf).
The resulting function `relu6` is commonly used in low-precision scenarios.

| Argument       | Type                               | Description                                                                                                                                      |
| -------------- | ---------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                                                  |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                                                   |
| _keyword-only_ |                                    |                                                                                                                                                  |
| `init_W`       | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`glorot_uniform_init`](/docs/api-initializers#glorot_uniform_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.                        |
| `dropout`      | <tt>Optional[float]</tt>           | Dropout rate to avoid overfitting.                                                                                                               |
| `normalize`    | <tt>bool</tt>                      | Whether or not to apply [layer normalization](#layernorm). Defaults to `False`.                                                                  |
| `k`            | <tt>float</tt>                     | Maximum value. Defaults to `6.0`..                                                                                                               |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created dense layer.                                                                                                                         |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/clipped_linear.py#L132
```

### HardSigmoid {#hardsigmoid tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A dense layer with hard sigmoid activation function, which is a fast linear
approximation of sigmoid, defined as `max(0, min(1, x * 0.2 + 0.5))`.

| Argument       | Type                               | Description                                                                                                                                      |
| -------------- | ---------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                                                  |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                                                   |
| _keyword-only_ |                                    |                                                                                                                                                  |
| `init_W`       | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`glorot_uniform_init`](/docs/api-initializers#glorot_uniform_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.                        |
| `dropout`      | <tt>Optional[float]</tt>           | Dropout rate to avoid overfitting.                                                                                                               |
| `normalize`    | <tt>bool</tt>                      | Whether or not to apply [layer normalization](#layernorm). Defaults to `False`.                                                                  |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created dense layer.                                                                                                                         |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/clipped_linear.py#L90
```

### HardTanh {#hardtanh tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A dense layer with hard tanh activation function, which is a fast linear
approximation of tanh, defined as `max(-1, min(1, x))`.

| Argument       | Type                               | Description                                                                                                                                      |
| -------------- | ---------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                                                  |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                                                   |
| _keyword-only_ |                                    |                                                                                                                                                  |
| `init_W`       | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`glorot_uniform_init`](/docs/api-initializers#glorot_uniform_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.                        |
| `dropout`      | <tt>Optional[float]</tt>           | Dropout rate to avoid overfitting.                                                                                                               |
| `normalize`    | <tt>bool</tt>                      | Whether or not to apply [layer normalization](#layernorm). Defaults to `False`.                                                                  |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created dense layer.                                                                                                                         |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/clipped_linear.py#L111
```

### ClippedLinear {#clippedlinear tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A dense layer implementing a flexible clipped linear activation function of the
form `max(min_value, min(max_value, x * slope + offset))`. It is used to
implement the [`ReluK`](#reluk), [`HardSigmoid`](#hardsigmoid), and
[`HardTanh`](#hardtanh) layers.

| Argument       | Type                               | Description                                                                                                                                      |
| -------------- | ---------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                                                  |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                                                   |
| _keyword-only_ |                                    |                                                                                                                                                  |
| `init_W`       | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`glorot_uniform_init`](/docs/api-initializers#glorot_uniform_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.                        |
| `dropout`      | <tt>Optional[float]</tt>           | Dropout rate to avoid overfitting.                                                                                                               |
| `normalize`    | <tt>bool</tt>                      | Whether or not to apply [layer normalization](#layernorm). Defaults to `False`.                                                                  |
| `slope`        | <tt>float</tt>                     | The slope of the linear function: `input * slope`.                                                                                               |
| `offset`       | <tt>float</tt>                     | The offset or intercept of the linear function: `input * slope + offset`.                                                                        |
| `min_val`      | <tt>float</tt>                     | Minimum value to clip to.                                                                                                                        |
| `max_val`      | <tt>float</tt>                     | Maximum value to clip to.                                                                                                                        |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created dense layer.                                                                                                                         |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/clipped_linear.py
```

### HardSwish {#hardswish tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A dense layer implementing the hard Swish activation function, which is a fast
linear approximation of Swish: `x * hard_sigmoid(x)`.

| Argument       | Type                               | Description                                                                                                                            |
| -------------- | ---------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------- |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                                        |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                                         |
| _keyword-only_ |                                    |                                                                                                                                        |
| `init_W`       | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`he_normal_init`](/docs/api-initializers#he_normal_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.              |
| `dropout`      | <tt>Optional[float]</tt>           | Dropout rate to avoid overfitting.                                                                                                     |
| `normalize`    | <tt>bool</tt>                      | Whether or not to apply [layer normalization](#layernorm). Defaults to `False`.                                                        |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created dense layer.                                                                                                               |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/hard_swish.py
```

### HardSwishMobileNet {#hardswishmobilenet tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A dense layer implementing the a variant of the fast linear hard Swish
activation function used in `MobileNetV3`
[(Howard et al., 2019)](https://arxiv.org/abs/1905.02244), defined as
`x * (relu6(x + 3) / 6)`.

| Argument       | Type                               | Description                                                                                                                            |
| -------------- | ---------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------- |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                                        |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                                         |
| _keyword-only_ |                                    |                                                                                                                                        |
| `init_W`       | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`he_normal_init`](/docs/api-initializers#he_normal_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.              |
| `dropout`      | <tt>Optional[float]</tt>           | Dropout rate to avoid overfitting.                                                                                                     |
| `normalize`    | <tt>bool</tt>                      | Whether or not to apply [layer normalization](#layernorm). Defaults to `False`.                                                        |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created dense layer.                                                                                                               |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/hard_swish_mobilenet.py
```

### MultiSoftmax {#multisoftmax tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

Neural network layer that predicts several multi-class attributes at once. For
instance, we might predict one class with six variables, and another with five.
We predict the 11 neurons required for this, and then softmax them such that
columns 0-6 make a probability distribution and columns 6-11 make another.

| Argument    | Type                               | Description                      |
| ----------- | ---------------------------------- | -------------------------------- |
| `nOs`       | <tt>Tuple[int, ...]</tt>           | The sizes of the output vectors. |
| `nI`        | <tt>Optional[int]</tt>             | The size of the input vectors.   |
| **RETURNS** | <tt>Model[Floats2d, Floats2d]</tt> | The created multi softmax layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/multisoftmax.py
```

### ParametricAttention {#parametricattention tag="function"}

<inline-list>

- **Input:** <ndarray>Ragged</ndarray>
- **Output:** <ndarray>Ragged</ndarray>
- **Parameters:** <ndarray shape="nO,">Q</ndarray>

</inline-list>

A layer that uses the parametric attention scheme described by
[Yang et al. (2016)](https://www.cs.cmu.edu/~./hovy/papers/16HLT-hierarchical-attention-networks.pdf).
The layer learns a parameter vector that is used as the keys in a single-headed
attention mechanism.

| Argument    | Type                           | Description                     |
| ----------- | ------------------------------ | ------------------------------- |
| `nO`        | <tt>Optional[int]</tt>         | The size of the output vectors. |
| **RETURNS** | <tt>Model[Ragged, Ragged]</tt> | The created attention layer.    |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/parametricattention.py
```

### ParametricAttention_v2 {#parametricattention_v2 tag="function"}

<inline-list>

- **Input:** <ndarray>Ragged</ndarray>
- **Output:** <ndarray>Ragged</ndarray>
- **Parameters:** <ndarray shape="nO,">Q</ndarray>

</inline-list>

A layer that uses the parametric attention scheme described by
[Yang et al. (2016)](https://aclanthology.org/N16-1174).
The layer learns a parameter vector that is used as the keys in a single-headed
attention mechanism.

<infobox variant="warning">

The original `ParametricAttention` layer uses the hidden representation as-is
for the keys in the attention. This differs from the paper that introduces
parametric attention (Equation 5). `ParametricAttention_v2` adds the option to
transform the key representation in line with the paper by passing such a 
transformation through the `key_transform` parameter.

</infobox>


| Argument        | Type                                         | Description                                                            |
|-----------------|----------------------------------------------|------------------------------------------------------------------------|
| `key_transform` | <tt>Optional[Model[Floats2d, Floats2d]]</tt> | Transformation to apply to the key representations. Defaults to `None` |
| `nO`            | <tt>Optional[int]</tt>                       | The size of the output vectors.                                        |
| **RETURNS**     | <tt>Model[Ragged, Ragged]</tt>               | The created attention layer.                                           |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/parametricattention_v2.py
```



### Relu {#relu tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A dense layer with Relu activation.

| Argument       | Type                               | Description                                                                                                                                      |
| -------------- | ---------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                                                  |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                                                   |
| _keyword-only_ |                                    |                                                                                                                                                  |
| `init_W`       | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`glorot_uniform_init`](/docs/api-initializers#glorot_uniform_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.                        |
| `dropout`      | <tt>Optional[float]</tt>           | Dropout rate to avoid overfitting.                                                                                                               |
| `normalize`    | <tt>bool</tt>                      | Whether or not to apply [layer normalization](#layernorm), (default: False).                                                                     |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created Relu layer.                                                                                                                          |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/relu.py
```

### Softmax {#softmax tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A dense layer with a softmax activation. This is usually used as a prediction
layer. Vectors produced by the softmax function sum to 1, and have values
between 0 and 1, so each vector can be interpreted as a probability
distribution.

| Argument       | Type                               | Description                                                                                                                  |
| -------------- | ---------------------------------- | ---------------------------------------------------------------------------------------------------------------------------- |
| `nO`           | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                              |
| `nI`           | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                               |
| _keyword-only_ |                                    |                                                                                                                              |
| `init_W`       | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`. |
| `init_b`       | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.    |
| **RETURNS**    | <tt>Model[Floats2d, Floats2d]</tt> | The created softmax layer.                                                                                                   |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/softmax.py
```

### Softmax_v2 {#softmax_v2 tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>
- **Parameters:** <ndarray shape="nO, nI">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>

</inline-list>

A dense layer with a softmax activation. This is usually used as a prediction
layer. Vectors produced by the softmax function sum to 1, and have values
between 0 and 1, so each vector can be interpreted as a probability
distribution.

`Softmax_v2` supports outputting unnormalized probabilities during inference by
using `normalize_outputs=False` as an argument. This is useful when we are only
interested in finding the top-k classes, but not their probabilities. Computing
unnormalized probabilities is faster, because it skips the expensive
normalization step.

The `temperature` argument of `Softmax_v2` provides control of the softmax
distribution. Values larger than 1 increase entropy and values between 0 and 1
(exclusive) decrease entropy of the distribution. The default temperature of 1
will calculate the unmodified softmax distribution. `temperature` is not used
during inference when `normalize_outputs=False`.

| Argument            | Type                               | Description                                                                                                                  |
| ------------------- | ---------------------------------- | ---------------------------------------------------------------------------------------------------------------------------- |
| `nO`                | <tt>Optional[int]</tt>             | The size of the output vectors.                                                                                              |
| `nI`                | <tt>Optional[int]</tt>             | The size of the input vectors.                                                                                               |
| _keyword-only_      |                                    |                                                                                                                              |
| `init_W`            | <tt>Optional[Callable]</tt>        | A function to initialize the weights matrix. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`. |
| `init_b`            | <tt>Optional[Callable]</tt>        | A function to initialize the bias vector. Defaults to [`zero_init`](/docs/api-initializers#zero_init) when set to `None`.    |
| `normalize_outputs` | <tt>bool</tt>                      | Return normalized probabilities during inference. Defaults to `True`.                                                        |
| `temperature`       | <tt>float</tt>                     | Temperature to divide logits by. Defaults to `1.0`.                                                                          |
| **RETURNS**         | <tt>Model[Floats2d, Floats2d]</tt> | The created softmax layer.                                                                                                   |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/softmax.py
```

### SparseLinear {#sparselinear tag="function"}

<inline-list>

- **Input:** <ndarray>Tuple[ArrayXd, ArrayXd, ArrayXd]</ndarray>
- **Output:** <ndarray>ArrayXd</ndarray>
- **Parameters:** <ndarray shape="nO*length,">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>, `length` <tt>int</tt>

</inline-list>

A sparse linear layer using the "hashing trick". Useful for tasks such as text
classification. Inputs to the layer should be a tuple of arrays
`(keys, values, lengths)`, where the `keys` and `values` are arrays of the same
length, describing the concatenated batch of input features and their values.
The `lengths` array should have one entry per sequence in the batch, and the sum
of the lengths should equal the length of the keys and values array.

<infobox variant="warning">

`SparseLinear` should not be used for new models because it contains an indexing
bug. As a result, only a subset of the weights is used. Use
[`SparseLinear_v2`](#sparselinear_v2) instead.

</infobox>

| Argument    | Type                                                      | Description                                              |
| ----------- | --------------------------------------------------------- | -------------------------------------------------------- |
| `nO`        | <tt>Optional[int]</tt>                                    | The size of the output vectors.                          |
| `length`    | <tt>int</tt>                                              | The size of the weights vector, to be tuned empirically. |
| **RETURNS** | <tt>Model[Tuple[ArrayXd, ArrayXd, ArrayXd], ArrayXd]</tt> | The created layer.                                       |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/sparselinear.pyx
```

### SparseLinear_v2 {#sparselinear_v2 tag="function" new="8.1.6"}

<inline-list>

- **Input:** <ndarray>Tuple[ArrayXd, ArrayXd, ArrayXd]</ndarray>
- **Output:** <ndarray>ArrayXd</ndarray>
- **Parameters:** <ndarray shape="nO*length,">W</ndarray>,
  <ndarray shape="nO,">b</ndarray>, `length` <tt>int</tt>

</inline-list>

A sparse linear layer using the "hashing trick". Useful for tasks such as text
classification. Inputs to the layer should be a tuple of arrays
`(keys, values, lengths)`, where the `keys` and `values` are arrays of the same
length, describing the concatenated batch of input features and their values.
The `lengths` array should have one entry per sequence in the batch, and the sum
of the lengths should equal the length of the keys and values array.

| Argument    | Type                                                      | Description                                              |
| ----------- | --------------------------------------------------------- | -------------------------------------------------------- |
| `nO`        | <tt>Optional[int]</tt>                                    | The size of the output vectors.                          |
| `length`    | <tt>int</tt>                                              | The size of the weights vector, to be tuned empirically. |
| **RETURNS** | <tt>Model[Tuple[ArrayXd, ArrayXd, ArrayXd], ArrayXd]</tt> | The created layer.                                       |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/sparselinear.pyx
```

## Reduction operations {#reduction-ops}

### reduce_first {#reduce_first tag="function"}

<inline-list>

- **Input:** <ndarray>Ragged</ndarray>
- **Output:** <ndarray shape="batch_size, nO">ArrayXd</ndarray>

</inline-list>

Pooling layer that reduces the dimensions of the data by selecting the first
item of each sequence. This is most useful after multi-head attention layers,
which can learn to assign a good feature representation for the sequence to one
of its elements.

| Argument    | Type                            | Description                |
| ----------- | ------------------------------- | -------------------------- |
| **RETURNS** | <tt>Model[Ragged, ArrayXd]</tt> | The created pooling layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/reduce_first.py
```

### reduce_last {#reduce_last tag="function"}

Pooling layer that reduces the dimensions of the data by selecting the last item
of each sequence. This is typically used after multi-head attention or recurrent
neural network layers such as LSTMs, which can learn to assign a good feature
representation for the sequence to its final element.

<inline-list>

- **Input:** <ndarray>Ragged</ndarray>
- **Output:** <ndarray shape="batch_size, nO">ArrayXd</ndarray>

</inline-list>

| Argument    | Type                            | Description                |
| ----------- | ------------------------------- | -------------------------- |
| **RETURNS** | <tt>Model[Ragged, ArrayXd]</tt> | The created pooling layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/reduce_last.py
```

### reduce_max {#reduce_max tag="function"}

<inline-list>

- **Input:** <ndarray>Ragged</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>

</inline-list>

Pooling layer that reduces the dimensions of the data by selecting the maximum
value for each feature. A `ValueError` is raised if any element in `lengths` is
zero.

| Argument    | Type                             | Description                |
| ----------- | -------------------------------- | -------------------------- |
| **RETURNS** | <tt>Model[Ragged, Floats2d]</tt> | The created pooling layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/reduce_max.py
```

### reduce_mean {#reduce_mean tag="function"}

<inline-list>

- **Input:** <ndarray>Ragged</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>

</inline-list>

Pooling layer that reduces the dimensions of the data by computing the average
value of each feature. Zero-length sequences are reduced to the zero vector.

| Argument    | Type                             | Description                |
| ----------- | -------------------------------- | -------------------------- |
| **RETURNS** | <tt>Model[Ragged, Floats2d]</tt> | The created pooling layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/reduce_mean.py
```

### reduce_sum {#reduce_sum tag="function"}

<inline-list>

- **Input:** <ndarray>Ragged</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d</ndarray>

</inline-list>

Pooling layer that reduces the dimensions of the data by computing the sum for
each feature. Zero-length sequences are reduced to the zero vector.

| Argument    | Type                             | Description                |
| ----------- | -------------------------------- | -------------------------- |
| **RETURNS** | <tt>Model[Ragged, Floats2d]</tt> | The created pooling layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/reduce_sum.py
```

---

## Combinators {#combinators}

Combinators are layers that express **higher-order functions**: they take one or
more layers as arguments and express some relationship or perform some
additional logic around the child layers. Combinators can also be used to
[overload operators](/docs/usage-models#operators). For example, binding `chain`
to `>>` allows you to write `Relu(512) >> Softmax()` instead of
`chain(Relu(512), Softmax())`.

### add {#add tag="function"}

Compose two or more models `f`, `g`, etc, such that their outputs are added,
i.e. `add(f, g)(x)` computes `f(x) + g(x)`.

| Argument    | Type                         | Description            |
| ----------- | ---------------------------- | ---------------------- |
| `*layers`   | <tt>Model[Any, ArrayXd]</tt> | The models to compose. |
| **RETURNS** | <tt>Model[Any, ArrayXd]</tt> | The composed model.    |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/add.py
```

### bidirectional {#bidirectional tag="function"}

Stitch two RNN models into a bidirectional layer. Expects squared sequences.

| Argument    | Type                                     | Description                       |
| ----------- | ---------------------------------------- | --------------------------------- |
| `l2r`       | <tt>Model[Padded, Padded]</tt>           | The first model.                  |
| `r2l`       | <tt>Optional[Model[Padded, Padded]]</tt> | The second model.                 |
| **RETURNS** | <tt>Model[Padded, Padded]</tt>           | The composed bidirectional layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/bidirectional.py
```

### chain {#chain tag="function"}

Compose two or more models such that they become layers of a single feed-forward
model, e.g. `chain(f, g)` computes `g(f(x))`.

| Argument    | Type           | Description                       |
| ----------- | -------------- | --------------------------------- |
| `layer1`    | <tt>Model</tt> | The first model to compose.       |
| `layer2`    | <tt>Model</tt> | The second model to compose.      |
| `*layers`   | <tt>Model</tt> | Any additional models to compose. |
| **RETURNS** | <tt>Model</tt> | The composed feed-forward model.  |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/chain.py
```

### clone {#clone tag="function"}

Construct `n` copies of a layer, with distinct weights. For example,
`clone(f, 3)(x)` computes `f(f'(f''(x)))`.

| Argument    | Type           | Description                                      |
| ----------- | -------------- | ------------------------------------------------ |
| `orig`      | <tt>Model</tt> | The layer to copy.                               |
| `n`         | <tt>int</tt>   | The number of copies to construct.               |
| **RETURNS** | <tt>Model</tt> | A composite model containing two or more copies. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/clone.py
```

### concatenate {#concatenate tag="function"}

Compose two or more models `f`, `g`, etc, such that their outputs are
concatenated, i.e. `concatenate(f, g)(x)` computes `hstack(f(x), g(x))`.

| Argument    | Type                | Description            |
| ----------- | ------------------- | ---------------------- |
| `*layers`   | <tt>Model</tt>, ... | The models to compose. |
| **RETURNS** | <tt>Model</tt>      | The composed model.    |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/concatenate.py
```

### map_list {#map_list tag="function"}

Map a child layer across list inputs.

| Argument    | Type                                  | Description             |
| ----------- | ------------------------------------- | ----------------------- |
| `layer`     | <tt>Model[InT, OutT]</tt>             | The child layer to map. |
| **RETURNS** | <tt>Model[List[InT], List[OutT]]</tt> | The composed model.     |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/map_list.py
```

### expand_window {#expand_window tag="function"}

<inline-list>

- **Input:** <ndarray shape="batch_size, nI">Floats2d, Ragged</ndarray>
- **Output:** <ndarray shape="batch_size, nO">Floats2d, Ragged</ndarray>
- **Attrs:** `window_size` <tt>int</tt>

</inline-list>

For each vector in an input, construct an output vector that contains the input
and a window of surrounding vectors. This is one step in a convolution. If the
`window_size` is three, the output size `nO` will be `nI * 7` after
concatenating three contextual vectors from the left, and three from the right,
to each input vector. In general, `nO` equals `nI * (2 * window_size + 1)`.

| Argument      | Type                 | Description                                                                    |
| ------------- | -------------------- | ------------------------------------------------------------------------------ |
| `window_size` | <tt>int</tt>         | The window size (default 1) that determines the number of surrounding vectors. |
| **RETURNS**   | <tt>Model[T, T]</tt> | The created layer for adding context to vectors.                               |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/expand_window.py
```

### noop {#noop tag="function"}

Transform a sequences of layers into a null operation.

| Argument    | Type           | Description            |
| ----------- | -------------- | ---------------------- |
| `*layers`   | <tt>Model</tt> | The models to compose. |
| **RETURNS** | <tt>Model</tt> | The composed model.    |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/noop.py
```

### residual {#residual tag="function"}

<inline-list>

- **Input:** <ndarray>List[FloatsXd]</ndarray> / <ndarray>Ragged</ndarray> /
  <ndarray>Padded</ndarray> / <ndarray>FloatsXd</ndarray>
  <ndarray>Floats1d</ndarray> <ndarray>Floats2d</ndarray>
  <ndarray>Floats3d</ndarray> <ndarray>Floats4d</ndarray>
- **Output:** <ndarray>List[FloatsXd]</ndarray> / <ndarray>Ragged</ndarray> /
  <ndarray>Padded</ndarray> / <ndarray>FloatsXd</ndarray>
  <ndarray>Floats1d</ndarray> <ndarray>Floats2d</ndarray>
  <ndarray>Floats3d</ndarray> <ndarray>Floats4d</ndarray>

</inline-list>

A unary combinator creating a residual connection. This converts a layer
computing `f(x)` into one that computes `f(x)+x`. Gradients flow through
residual connections directly, helping the network to learn more smoothly.

| Argument    | Type                 | Description                                        |
| ----------- | -------------------- | -------------------------------------------------- |
| `layer`     | <tt>Model[T, T]</tt> | A model with the same input and output types.      |
| **RETURNS** | <tt>Model[T, T]</tt> | A model with the unchanged input and output types. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/residual.py
```

### tuplify {#tuplify tag="function"}

Give each child layer a separate copy of the input, and the combine the output
of the child layers into a tuple. Useful for providing original and modified
input to a downstream layer.

On the backward pass the loss from each child is added together, so when using
custom datatypes they should define an addition operator.

| Argument    | Type                          | Description                      |
| ----------- | ----------------------------- | -------------------------------- |
| `*layers`   | <tt>Model[Any, T] ...</tt>    | The models to compose.           |
| **RETURNS** | <tt>Model[Any, Tuple[T]]</tt> | The composed feed-forward model. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/tuplify.py
```

### siamese {#siamese tag="function"}

Combine and encode a layer and a similarity function to form a
[siamese architecture](https://en.wikipedia.org/wiki/Siamese_neural_network).
Typically used to learn symmetric relationships, such as redundancy detection.

| Argument     | Type                           | Description                               |
| ------------ | ------------------------------ | ----------------------------------------- |
| `layer`      | <tt>Model</tt>                 | The layer to run over the pair of inputs. |
| `similarity` | <tt>Model</tt>                 | The similarity layer.                     |
| **RETURNS**  | <tt>Model[Tuple, ArrayXd]</tt> | The created siamese layer.                |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/siamese.py
```

### uniqued {#uniqued tag="function"}

Group inputs to a layer, so that the layer only has to compute for the unique
values. The data is transformed back before output, and the same transformation
is applied for the gradient. Effectively, this is a cache local to each
minibatch. The `uniqued` wrapper is useful for word inputs, because common words
are seen often, but we may want to compute complicated features for the words,
using e.g. character LSTM.

| Argument       | Type                             | Description                  |
| -------------- | -------------------------------- | ---------------------------- |
| `layer`        | <tt>Model</tt>                   | The layer.                   |
| _keyword-only_ |                                  |                              |
| `column`       | <tt>int</tt>                     | The column. Defaults to `0`. |
| **RETURNS**    | <tt>Model[Ints2d, Floats2d]</tt> | The composed model.          |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/uniqued.py
```

---

## Data type transfers {#transfers}

### array_getitem, ints_getitem, floats_getitem {#array_getitem tag="function"}

<inline-list>

- **Input:** <ndarray>ArrayXd</ndarray>
- **Output:** <ndarray>ArrayXd</ndarray>

</inline-list>

Index into input arrays, and return the subarrays. Multi-dimensional indexing
can be performed by passing in a tuple, and slicing can be performed using the
slice object. For instance, `X[:, :-1]` would be
`(slice(None, None), slice(None, -1))`.

| Argument | Type                                                                                          | Description                |
| -------- | --------------------------------------------------------------------------------------------- | -------------------------- |
| `index`  | <tt>Union[Union[int, slice, Sequence[int]], Tuple[Union[int, slice, Sequence[int]], ...]</tt> | A valid numpy-style index. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/array_getitem.py
```

### list2array {#list2array tag="function"}

<inline-list>

- **Input:** <ndarray>List2d</ndarray>
- **Output:** <ndarray>Array2d</ndarray>

</inline-list>

Transform sequences to ragged arrays if necessary. If sequences are already
ragged, do nothing. A ragged array is a tuple `(data, lengths)`, where `data` is
the concatenated data.

| Argument    | Type                            | Description                              |
| ----------- | ------------------------------- | ---------------------------------------- |
| **RETURNS** | <tt>Model[List2d, Array2d]</tt> | The layer to compute the transformation. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/list2array.py
```

### list2ragged {#list2ragged tag="function"}

<inline-list>

- **Input:** <ndarray>ListXd</ndarray>
- **Output:** <ndarray>Ragged</ndarray>

</inline-list>

Transform sequences to ragged arrays if necessary and return the ragged array.
If sequences are already ragged, do nothing. A ragged array is a tuple
`(data, lengths)`, where `data` is the concatenated data.

| Argument    | Type                           | Description                              |
| ----------- | ------------------------------ | ---------------------------------------- |
| **RETURNS** | <tt>Model[ListXd, Ragged]</tt> | The layer to compute the transformation. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/list2ragged.py
```

### list2padded {#list2padded tag="function"}

<inline-list>

- **Input:** <ndarray>List2d</ndarray>
- **Output:** <ndarray>Padded</ndarray>

</inline-list>

Create a layer to convert a list of array inputs into
[`Padded`](/docs/api-types#padded).

| Argument    | Type                           | Description                              |
| ----------- | ------------------------------ | ---------------------------------------- |
| **RETURNS** | <tt>Model[List2d, Padded]</tt> | The layer to compute the transformation. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/list2padded.py
```

### ragged2list {#ragged2list tag="function"}

<inline-list>

- **Input:** <ndarray>Ragged</ndarray>
- **Output:** <ndarray>ListXd</ndarray>

</inline-list>

Transform sequences from a ragged format into lists.

| Argument    | Type                           | Description                              |
| ----------- | ------------------------------ | ---------------------------------------- |
| **RETURNS** | <tt>Model[Ragged, ListXd]</tt> | The layer to compute the transformation. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/ragged2list.py
```

### padded2list {#padded2list tag="function"}

<inline-list>

- **Input:** <ndarray>Padded</ndarray>
- **Output:** <ndarray>List2d</ndarray>

</inline-list>

Create a layer to convert a [`Padded`](/docs/api-types#padded) input into a list
of arrays.

| Argument    | Type                           | Description                              |
| ----------- | ------------------------------ | ---------------------------------------- |
| **RETURNS** | <tt>Model[Padded, List2d]</tt> | The layer to compute the transformation. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/padded2list.py
```

### remap_ids {#remap_ids tag="function"}

<inline-list>

- **Input:** <tt>Union[Sequence[Hashable], Ints1d, Ints2d]</tt>
- **Output:** <ndarray>Ints2d</ndarray>

</inline-list>

Remap a sequence of strings, integers or other hashable inputs using a mapping
table, usually as a preprocessing step before embeddings. The input can also be
a two dimensional integer array in which case the `column` attribute tells the
`remap_ids` layer which column of the array to map with the `mapping_table`.
Both attributes can be passed on initialization, but since the layer is designed
to retrieve them from `model.attrs` during `forward`, they can be set any time
before calling `forward`. This means that they can also be changed between
calls. Before calling `forward` the `mapping_table` has to be set and for 2D
inputs the `column` is also required.

| Argument        | Type                                                              | Description                                                                                                  |
| --------------- | ----------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------ |
| `mapping_table` | <tt>Dict[Any, int]</tt>                                           | The mapping table to use. Can also be set after initialization by writing to `model.attrs["mapping_table"]`. |
| `default`       | <tt>int</tt>                                                      | The default value if the input does not have an entry in the mapping table.                                  |
| `column`        | <tt>int</tt>                                                      | The column to apply the mapper to in case of 2D input.                                                       |
| **RETURNS**     | <tt>Model[Union[Sequence[Hashable], Ints1d, Ints2d], Ints2d]</tt> | The layer to compute the transformation.                                                                     |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/remap_ids.py
```

### strings2arrays {#strings2arrays tag="function"}

<inline-list>

- **Input:** <tt>Sequence[Sequence[str]]</tt>
- **Output:** <ndarray>List[Ints2d]</ndarray>

</inline-list>

Transform a sequence of string sequences to a list of arrays.

| Argument    | Type                                                  | Description                              |
| ----------- | ----------------------------------------------------- | ---------------------------------------- |
| **RETURNS** | <tt>Model[Sequence[Sequence[str]], List[Ints2d]]</tt> | The layer to compute the transformation. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/strings2arrays.py
```

### with_array {#with_array tag="function"}

<inline-list>

- **Input / output:** <tt>Union[Padded, Ragged, ListXd, ArrayXd]</tt>

</inline-list>

Transform sequence data into a contiguous array on the way into and out of a
model. Handles a variety of sequence types: lists, padded and ragged. If the
input is an array, it is passed through unchanged.

| Argument       | Type                             | Description                   |
| -------------- | -------------------------------- | ----------------------------- |
| `layer`        | <tt>Model[ArrayXd, ArrayXd]</tt> | The layer to wrap.            |
| _keyword-only_ |                                  |                               |
| `pad`          | <tt>int</tt>                     | The padding. Defaults to `0`. |
| **RETURNS**    | <tt>Model</tt>                   | The wrapped layer.            |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/with_array2d.py
```

### with_array2d {#with_array2d tag="function"}

<inline-list>

- **Input / output:** <tt>Union[Padded, Ragged, List2d, Array2d]</tt>

</inline-list>

Transform sequence data into a contiguous two-dimensional array on the way into
and out of a model. In comparison to the `with_array` layer, the behavior of
this layer mostly differs on `Padded` inputs, as this layer merges the batch and
length axes to form a two-dimensional array. Handles a variety of sequence
types: lists, padded and ragged. If the input is a two-dimensional array, it is
passed through unchanged.

| Argument       | Type                             | Description                   |
| -------------- | -------------------------------- | ----------------------------- |
| `layer`        | <tt>Model[Array2d, Array2d]</tt> | The layer to wrap.            |
| _keyword-only_ |                                  |                               |
| `pad`          | <tt>int</tt>                     | The padding. Defaults to `0`. |
| **RETURNS**    | <tt>Model</tt>                   | The wrapped layer.            |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/with_array.py
```

### with_flatten {#with_flatten tag="function"}

<inline-list>

- **Input:** <tt>Sequence[Sequence[Any]]</tt>
- **Output:** <tt>ListXd</tt>

</inline-list>

Flatten nested inputs on the way into a layer and reverse the transformation
over the outputs.

<infobox variant="warning">

Even though `with_flatten` is a layer wrapper, it does not preserve symmetry
between the input and output data types. This often makes it hard to compose
with other layers. Use [`with_flatten_v2`](#with_flatten_v2) instead.

</infobox>

| Argument    | Type                                            | Description        |
| ----------- | ----------------------------------------------- | ------------------ |
| `layer`     | <tt>Model[Sequence[Any], ArrayXd]</tt>          | The layer to wrap. |
| **RETURNS** | <tt>Model[Sequence[Sequence[Any]], ListXd]</tt> | The wrapped layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/with_flatten.py
```

### with_flatten_v2 {#with_flatten_v2 tag="function" new="8.1.6"}

<inline-list>

- **Input:** <tt>List[List[InItemT]]</tt>
- **Output:** <tt>List[List[OutItemT]]</tt>

</inline-list>

Flatten nested inputs on the way into a layer and reverse the transformation
over the outputs.

| Argument    | Type                                                      | Description        |
| ----------- | --------------------------------------------------------- | ------------------ |
| `layer`     | <tt>Model[List[InItemT], List[OutItemT]]</tt>             | The layer to wrap. |
| **RETURNS** | <tt>Model[List[List[InItemT]], List[List[OutItemT]]]</tt> | The wrapped layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/with_flatten_v2.py
```

### with_padded {#with_padded tag="function"}

<inline-list>

- **Input / output:** <tt>Union[Padded, Ragged, List2d, Floats3d,
  Tuple[Floats3d, Ints1d, Ints1d, Ints1d]]</tt>

</inline-list>

Convert sequence input into the [`Padded`](/docs/api-types#padded) data type on
the way into a layer and reverse the transformation on the output.

| Argument    | Type                           | Description        |
| ----------- | ------------------------------ | ------------------ |
| `layer`     | <tt>Model[Padded, Padded]</tt> | The layer to wrap. |
| **RETURNS** | <tt>Model</tt>                 | The wrapped layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/with_padded.py
```

### with_ragged {#with_ragged tag="function"}

<inline-list>

- **Input / output:** <tt>Union[Padded, Ragged, ListXd, Floats3d,
  Tuple[Floats2d, Ints1d]]</tt>

</inline-list>

Convert sequence input into the [`Ragged`](/docs/api-types#ragged) data type on
the way into a layer and reverse the transformation on the output.

| Argument    | Type                           | Description        |
| ----------- | ------------------------------ | ------------------ |
| `layer`     | <tt>Model[Ragged, Ragged]</tt> | The layer to wrap. |
| **RETURNS** | <tt>Model</tt>                 | The wrapped layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/with_ragged.py
```

### with_list {#with_list tag="function"}

<inline-list>

- **Input / output:** <tt>Union[Padded, Ragged, List2d]</tt>

</inline-list>

Convert sequence input into lists on the way into a layer and reverse the
transformation on the outputs.

| Argument    | Type                           | Description        |
| ----------- | ------------------------------ | ------------------ |
| `layer`     | <tt>Model[List2d, List2d]</tt> | The layer to wrap. |
| **RETURNS** | <tt>Model</tt>                 | The wrapped layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/with_list.py
```

### with_getitem {#with_getitem tag="function"}

<inline-list>

- **Input:** <tt>Tuple</tt>
- **Output:** <tt>Tuple</tt>

</inline-list>

Transform data on the way into and out of a layer by plucking an item from a
tuple.

| Argument    | Type                             | Description                        |
| ----------- | -------------------------------- | ---------------------------------- |
| `idx`       | <tt>int</tt>                     | The index to pluck from the tuple. |
| `layer`     | <tt>Model[ArrayXd, ArrayXd]</tt> | The layer to wrap.                 |
| **RETURNS** | <tt>Model[Tuple, Tuple]</tt>     | The wrapped layer.                 |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/with_getitem.py
```

### with_reshape {#with_reshape tag="function"}

<inline-list>

- **Input:** <ndarray>Array3d</tt>
- **Output:** <ndarray>Array3d</tt>

</inline-list>

Reshape data on the way into and out from a layer.

| Argument    | Type                             | Description        |
| ----------- | -------------------------------- | ------------------ |
| `layer`     | <tt>Model[Array2d, Array2d]</tt> | The layer to wrap. |
| **RETURNS** | <tt>Model[Array3d, Array3d]</tt> | The wrapped layer. |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/with_reshape.py
```

### with_debug {#with_debug tag="function"}

<inline-list>

- **Input:** <tt>Any</tt>
- **Output:** <tt>Any</tt>

</inline-list>

Debugging layer that wraps any layer and allows executing callbacks during the
forward pass, backward pass and initialization. The callbacks will receive the
same arguments as the functions they're called in and are executed before the
function runs.

<infobox variant="warning">

This layer should only be used for **debugging, logging, benchmarking etc.**,
not to modify data or perform any other side-effects that are relevant to the
network outside of debugging and testing it. If you need hooks that run in
specific places of the model lifecycle, you should write your own
[custom layer](/docs/usage-models#new-layers). You can use the implementation of
`with_debug` as a template.

</infobox>

```python
### Example
from thinc.api import Linear, with_debug

def on_init(model, X, Y):
    print(f"X: {type(Y)}, Y ({type(Y)})")

model = with_debug(Linear(2, 5), on_init=on_init)
model.initialize()
```

| Argument       | Type                                        | Description                                                                                                                                         |
| -------------- | ------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------- |
| `layer`        | <tt>Model</tt>                              | The layer to wrap.                                                                                                                                  |
| `name`         | <tt>Optional[str]</tt>                      | Optional name for the wrapped layer, will be prefixed by `debug:`. Defaults to name of the wrapped layer.                                           |
| _keyword-only_ |                                             |                                                                                                                                                     |
| `on_init`      | <tt>Callable[[Model, Any, Any], None]</tt>  | Function called on initialization. Receives the model and the `X` and `Y` passed to [`Model.initialize`](/docs/api-model#initialize), if available. |
| `on_forward`   | <tt>Callable[[Model, Any, bool], None]</tt> | Function called at the start of the forward pass. Receives the model, the inputs and the value of `is_train`.                                       |
| `on_backprop`  | <tt>Callable[[Any], None] = do_nothing</tt> | Function called at the start of the backward pass. Receives the gradient.                                                                           |
| **RETURNS**    | <tt>Model</tt>                              | The wrapped layer.                                                                                                                                  |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/with_debug.py
```

### with_nvtx_range {#with_nvtx_range tag="function"}

<inline-list>

- **Input:** <tt>Any</tt>
- **Output:** <tt>Any</tt>

</inline-list>

Layer that wraps any layer and marks the forward and backprop passes as an NVTX
range. This can be helpful when profiling GPU performance of a layer.

```python
### Example
from thinc.api import Linear, with_nvtx_range

model = with_nvtx_range(Linear(2, 5))
model.initialize()
```

| Argument         | Type                   | Description                                                                     |
| ---------------- | ---------------------- | ------------------------------------------------------------------------------- |
| `layer`          | <tt>Model</tt>         | The layer to wrap.                                                              |
| `name`           | <tt>Optional[str]</tt> | Optional name for the wrapped layer. Defaults to the name of the wrapped layer. |
| _keyword-only_   |                        |                                                                                 |
| `forward_color`  | <tt>int</tt>           | Identifier of the color to use for the forward pass                             |
| `backprop_color` | <tt>int</tt>           | Identifier of the color to use for the backward pass                            |
| **RETURNS**      | <tt>Model</tt>         | The wrapped layer.                                                              |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/with_nvtx_range.py
```

### with_signpost_interval {#with_signpost_interval tag="function" new="8.1.1"}

<inline-list>

- **Input:** <tt>Any</tt>
- **Output:** <tt>Any</tt>

</inline-list>

Layer that wraps any layer and marks the init, forward and backprop passes as a
(macOS) signpost interval. This can be helpful when profiling the performance of
a layer using macOS
[Instruments.app](https://help.apple.com/instruments/mac/current/). Use of this
layer requires that the
[`os-signpost`](https://github.com/explosion/os-signpost) package is installed.

```python
### Example
from os_signpost import Signposter
from thinc.api import Linear, with_signpost_interval

signposter = Signposter("com.example.my_subsystem",
    Signposter.Category.DynamicTracing)

model = with_signpost_interval(Linear(2, 5), signposter)
model.initialize()
```

| Argument     | Type                              | Description                                                                     |
| ------------ | --------------------------------- | ------------------------------------------------------------------------------- |
| `layer`      | <tt>Model</tt>                    | The layer to wrap.                                                              |
| `signposter` | <tt>os_signposter.Signposter</tt> | `Signposter` object to log the interval with.                                   |
| `name`       | <tt>Optional[str]</tt>            | Optional name for the wrapped layer. Defaults to the name of the wrapped layer. |
| **RETURNS**  | <tt>Model</tt>                    | The wrapped layer.                                                              |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/with_signpost_interval.py
```

---

## Wrappers {#wrappers}

### PyTorchWrapper, PyTorchRNNWrapper {#pytorchwrapper tag="function"}

<inline-list>

- **Input:** <tt>Any</tt>
- **Output:** <tt>Any</tt>

</inline-list>

Wrap a [PyTorch](https://pytorch.org) model so that it has the same API as Thinc
models. To optimize the model, you'll need to create a PyTorch optimizer and
call `optimizer.step` after each batch. The `PyTorchRNNWrapper` has the same
signature as the `PyTorchWrapper` and lets you to pass in a custom sequence
model that has the same inputs and output behavior as a
[`torch.nn.RNN`](https://pytorch.org/docs/stable/nn.html#torch.nn.RNN) object.

Your PyTorch model's forward method can take arbitrary positional arguments and
keyword arguments, but must return either a **single tensor** as output or a
**tuple**. You may find
[PyTorch's `register_forward_hook`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.register_forward_hook)
helpful if you need to adapt the output. The convert functions are used to map
inputs and outputs to and from your PyTorch model. Each function should return
the converted output, and a callback to use during the backward pass:

```python
Xtorch, get_dX = convert_inputs(X)
Ytorch, torch_backprop = model.shims[0](Xtorch, is_train)
Y, get_dYtorch = convert_outputs(Ytorch)
```

To allow maximum flexibility, the [`PyTorchShim`](/docs/api-model#shims) expects
[`ArgsKwargs`](/docs/api-types#argskwargs) objects on the way into the forward
and backward passes. The `ArgsKwargs` objects will be passed straight into the
model in the forward pass, and straight into `torch.autograd.backward` during
the backward pass.

| Argument          | Type                     | Description                                                                              |
| ----------------- | ------------------------ | ---------------------------------------------------------------------------------------- |
| `pytorch_model`   | <tt>Any</tt>             | The PyTorch model.                                                                       |
| `convert_inputs`  | <tt>Callable</tt>        | Function to convert inputs to PyTorch tensors (same signature as `forward` function).    |
| `convert_outputs` | <tt>Callable</tt>        | Function to convert outputs from PyTorch tensors (same signature as `forward` function). |
| **RETURNS**       | <tt>Model[Any, Any]</tt> | The Thinc model.                                                                         |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/pytorchwrapper.py
```

### TorchScriptWrapper_v1 {#torchscriptwrapper tag="function" new="8.1.6"}

<inline-list>

- **Input:** <tt>Any</tt>
- **Output:** <tt>Any</tt>

</inline-list>

Wrap a [TorchScript](https://pytorch.org/docs/stable/jit.html) model so that it
has the same API as Thinc models. To optimize the model, you'll need to create a
PyTorch optimizer and call `optimizer.step` after each batch.

Your TorchScript model's forward method can take arbitrary positional arguments
and keyword arguments, but must return either a **single tensor** as output or a
**tuple**. The convert functions are used to map inputs and outputs to and from
your TorchScript model. Each function should return the converted output, and a
callback to use during the backward pass:

```python
Xtorch, get_dX = convert_inputs(X)
Ytorch, torch_backprop = model.shims[0](Xtorch, is_train)
Y, get_dYtorch = convert_outputs(Ytorch)
```

To allow maximum flexibility, the [`TorchScriptShim`](/docs/api-model#shims)
expects [`ArgsKwargs`](/docs/api-types#argskwargs) objects on the way into the
forward and backward passes. The `ArgsKwargs` objects will be passed straight
into the model in the forward pass, and straight into `torch.autograd.backward`
during the backward pass.

Note that the `torchscript_model` argument can be `None`. This is useful for
deserialization since serialized TorchScript contains both the model and its
weights.

A PyTorch wrapper can be converted to a TorchScript wrapper using the
`pytorch_to_torchscript_wrapper` function:

```python
from thinc.api import PyTorchWrapper_v2, pytorch_to_torchscript_wrapper
import torch

model = PyTorchWrapper_v2(torch.nn.Linear(nI, nO)).initialize()
script_model = pytorch_to_torchscript_wrapper(model)
```

| Argument            | Type                                      | Description                                                                              |
| ------------------- | ----------------------------------------- | ---------------------------------------------------------------------------------------- |
| `torchscript_model` | <tt>Optional[torch.jit.ScriptModule]</tt> | The TorchScript model.                                                                   |
| `convert_inputs`    | <tt>Callable</tt>                         | Function to convert inputs to PyTorch tensors (same signature as `forward` function).    |
| `convert_outputs`   | <tt>Callable</tt>                         | Function to convert outputs from PyTorch tensors (same signature as `forward` function). |
| `mixed_precision`   | <tt>bool</tt>                             | Enable mixed-precision training.                                                         |
| `grad_scaler`       | <tt>Optional[PyTorchGradScaler]</tt>      | Gradient scaler to use during mixed-precision training.                                  |
| `device`            | <tt>Optional[torch.Device]</tt>           | The Torch device to execute the model on.                                                |
| **RETURNS**         | <tt>Model[Any, Any]</tt>                  | The Thinc model.                                                                         |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/torchscriptwrapper.py
```

### TensorFlowWrapper {#tensorflowwrapper tag="function"}

<inline-list>

- **Input:** <tt>Any</tt>
- **Output:** <tt>Any</tt>

</inline-list>

<infobox variant="warning">
In Thinc v8.2+, TensorFlow support is not enabled by default. To enable TensorFlow:

```python
from thinc.api import enable_tensorflow
enable_tensorflow()
```

</infobox>

Wrap a [TensorFlow](https://tensorflow.org) model, so that it has the same API
as Thinc models. To optimize the model, you'll need to create a TensorFlow
optimizer and call `optimizer.apply_gradients` after each batch. To allow
maximum flexibility, the [`TensorFlowShim`](/docs/api-model#shims) expects
[`ArgsKwargs`](/docs/api-types#argskwargs) objects on the way into the forward
and backward passes.

| Argument           | Type                     | Description           |
| ------------------ | ------------------------ | --------------------- |
| `tensorflow_model` | <tt>Any</tt>             | The TensorFlow model. |
| **RETURNS**        | <tt>Model[Any, Any]</tt> | The Thinc model.      |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/tensorflowwrapper.py
```

### MXNetWrapper {#mxnetwrapper tag="function"}

<inline-list>

- **Input:** <tt>Any</tt>
- **Output:** <tt>Any</tt>

</inline-list>

<infobox variant="warning">
In Thinc v8.2+, MXNet support is not enabled by default. To enable MXNet:

```python
from thinc.api import enable_mxnet
enable_mxnet()
```

</infobox>

Wrap a [MXNet](https://mxnet.apache.org/) model, so that it has the same API as
Thinc models. To optimize the model, you'll need to create a MXNet optimizer and
call `optimizer.step()` after each batch. To allow maximum flexibility, the
[`MXNetShim`](/docs/api-model#shims) expects
[`ArgsKwargs`](/docs/api-types#argskwargs) objects on the way into the forward
and backward passes.

| Argument           | Type                     | Description           |
| ------------------ | ------------------------ | --------------------- |
| `tensorflow_model` | <tt>Any</tt>             | The TensorFlow model. |
| **RETURNS**        | <tt>Model[Any, Any]</tt> | The Thinc model.      |

```python
https://github.com/explosion/thinc/blob/master/thinc/layers/mxnetwrapper.py
```