1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
|
---
title: Model
next: /docs/api-layers
---
Thinc uses just one model class for almost all layer types. Instead of creating
subclasses, you'll usually instantiate the `Model` class directly, passing in a
`forward` function that actually performs the computation. You can find examples
of this in the library itself, in
[`thinc.layers`](https://github.com/explosion/thinc/blob/master/thinc/layers)
(also see the [layers documentation](/docs/api-layers)).
| | |
| ---------------------- | ------------------------------------------------------------------------------------------------ |
| [**Model**](#model) | Class for implementing Thinc models and layers. |
| [**Utilities**](#util) | Helper functions for implementing models. |
| [**Shim**](#shim) | Interface for external models. Users can create subclasses of `Shim` to wrap external libraries. |
## Model {#model tag="class"}
Class for implementing Thinc models and layers.
<infobox variant="warning">
There's only one `Model` class in Thinc and layers are built using
**composition**, not inheritance. This means that a [layer](/docs/api-layers) or
composed model will return an **instance** of `Model` – it doesn't subclass it.
To read more about this concept, see the pages on
[Thinc's philosophy](/docs/concept) and [defining models](/docs/usage-models).
</infobox>
### Typing {#typing}
`Model` can be used as a
[generic type](https://docs.python.org/3/library/typing.html#generics) with two
parameters: the expected input and expected output. For instance,
`Model[List[Floats2d], Floats2d]` denotes a model that takes a list of
two-dimensional arrays of floats as inputs and outputs a two-dimensional array
of floats. A mismatch will cause a type error. For more details, see the docs on
[type checking](/docs/usage-type-checking).
```python
from typing import List
from thinc.api import Model
from thinc.types import Floats2d
def my_function(model: Model[List[Floats2d], Floats2d]):
...
```
### Attributes {#attributes}
| Name | Type | Description |
| ------ | ------------ | --------------------------------- |
| `name` | <tt>str</tt> | The name of the layer type. |
| `ops` | <tt>Ops</tt> | Perform array operations. |
| `id` | <tt>int</tt> | ID number for the model instance. |
### Properties {#properties}
| Name | Type | Description |
| ------------- | ------------------------ | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `layers` | <tt>List[Model]</tt> | A list of child layers of the model. You can use the list directly, including modifying it in-place: the standard way to add a layer to a model is simply `model.layers.append(layer)`. However, you cannot reassign the `model.layers` attribute to a new variable: `model.layers = []` will fail. |
| `shims` | <tt>List[Shim]</tt> | A list of child shims added to the model. |
| `attrs` | <tt>Dict[str, Any]</tt> | The model attributes. You can use the dict directly and assign _to_ it – but you cannot reassign `model.attrs` to a new variable: `model.attrs = {}` will fail. |
| `param_names` | <tt>Tuple[str, ...]</tt> | Get the names of registered parameter (including unset). |
| `grad_names` | <tt>Tuple[str, ...]</tt> | Get the names of parameters with registered gradients (including unset). |
| `dim_names` | <tt>Tuple[str, ...]</tt> | Get the names of registered dimensions (including unset). |
| `ref_names` | <tt>Tuple[str, ...]</tt> | Get the names of registered node references (including unset). |
### Model.\_\_init\_\_ {#init tag="method"}
Initialize a new model.
```python
### Example
model = Model(
"linear",
linear_forward,
init=linear_init,
dims={"nO": nO, "nI": nI},
params={"W": None, "b": None},
)
```
| Argument | Type | Description |
| -------------- | ------------------------------------------------------------- | --------------------------------------------------------------------------------------- |
| `name` | <tt>str</tt> | The name of the layer type. |
| `forward` | <tt>Callable</tt> | Function to compute the forward result and the backpropagation callback. |
| _keyword-only_ | | |
| `init` | <tt>Callable</tt> | Function to define the initialization logic. |
| `dims` | <tt>Dict[str, Optional[int]]</tt> | Dictionary describing the model's dimensions. Map unknown dimensions to `None`. |
| `params` | <tt>Dict[str, Optional[FloatsXd]]</tt> | Dictionary with the model's parameters. Set currently unavailable parameters to `None`. |
| `refs` | <tt>Dict[str, Optional[Model]]</tt> | Dictionary mapping specific nodes (sublayers) of the network to a name. |
| `attrs` | <tt>Dict[str, Any]</tt> | Dictionary of non-parameter attributes. |
| `layers` | <tt>List[Model]</tt> | List of child layers. |
| `shims` | <tt>List[Shim]</tt> | List of interfaces for external models. |
| `ops` | <tt>Optional[Union[NumpyOps, AppleOps, CupyOps, MPSOps]]</tt> | An `Ops` instance, which provides mathematical and memory operations. |
### Model.define_operators {#define_operators tag="classmethod,contextmanager"}
Bind arbitrary binary functions to Python operators, for use in any `Model`
instance. The method can (and should) be used as a contextmanager, so that the
overloading is limited to the immediate block. This allows concise and
expressive model definition. The following operators are supported: `+`, `-`,
`*`, `@`, `/`, `//`, `%`, `**`, `<<`, `>>`, `&`, `^` and `|`.
```python
### Example
from thinc.api import Model, Relu, Softmax, chain
with Model.define_operators({">>": chain}):
model = Relu(512) >> Relu(512) >> Softmax()
```
| Argument | Type | Description |
| ----------- | ---------------------------- | ------------------------------ |
| `operators` | <tt>Dict[str, Callable]</tt> | Functions mapped to operators. |
### Model.initialize {#initialize tag="method"}
Finish initialization of the model, optionally providing a batch of example
input and output data to perform shape inference. Until `Model.initialize` is
called, the model may not be in a ready state to operate on data: parameters or
dimensions may be unset. The `Model.initialize` method will usually delegate to
the `init` function given to [`Model.__init__`](#init).
If sample data is provided, it will be validated against the type annotations of
the `forward` function, if available. A
[`DataValidationError`](/docs/api-util#errors) is raised in case of a mismatch,
e.g. if the forward pass expects a two-dimensional array but the model is
initialized with a three-dimensional array.
```python
### Example
from thinc.api import Linear, zero_init
import numpy
X = numpy.zeros((128, 16), dtype="f")
Y = numpy.zeros((128, 10), dtype="f")
model = Linear(init_W=zero_init)
model.initialize(X=X, Y=Y)
```
| Argument | Type | Description |
| ----------- | ---------------------- | -------------------------------- |
| `X` | <tt>Optional[Any]</tt> | An example batch of input data. |
| `Y` | <tt>Optional[Any]</tt> | An example batch of output data. |
| **RETURNS** | <tt>Model</tt> | The model instance. |
### Model.\_\_call\_\_ {#call tag="method"}
Call the model's `forward` function, returning the output and a callback to
compute the gradients via backpropagation.
```python
### Example
from thinc.api import Linear
import numpy
X = numpy.zeros((128, 10), dtype="f")
model = Linear(10)
model.initialize(X=X)
Y, backprop = model(X, is_train=True)
```
| Argument | Type | Description |
| ----------- | ----------------------------- | --------------------------------------------------------------------------------------------------- |
| `X` | <tt>Any</tt> | A batch of input data. |
| `is_train` | <tt>bool</tt> | A boolean indicating whether the model is running in a training (as opposed to prediction) context. |
| **RETURNS** | <tt>Tuple[Any, Callable]</tt> | A batch of output data and the `backprop` callback. |
### Model.begin_update {#begin_update tag="method"}
Call the model's `forward` function with `is_train=True`, and return the output
and the backpropagation callback, which is a function that takes a gradient of
outputs and returns the corresponding gradient of inputs. The backpropagation
callback may also increment the gradients of the model parameters, via calls to
[`Model.inc_grad`](#inc_grad).
```python
### Example
from thinc.api import Linear
import numpy
X = numpy.zeros((128, 10), dtype="f")
model = Linear(10)
model.initialize(X=X)
Y, backprop = model.begin_update(X)
```
| Argument | Type | Description |
| ----------- | ----------------------------- | --------------------------------------------------- |
| `X` | <tt>Any</tt> | A batch of input data. |
| **RETURNS** | <tt>Tuple[Any, Callable]</tt> | A batch of output data and the `backprop` callback. |
### Model.predict {#predict tag="method"}
Call the model's `forward` function with `is_train=False`, and return only the
output, instead of the `(output, callback)` tuple.
```python
### Example
from thinc.api import Linear
import numpy
X = numpy.zeros((128, 10), dtype="f")
model = Linear(10)
model.initialize(X=X)
Y = model.predict(X)
```
| Argument | Type | Description |
| ----------- | ------------ | ----------------------- |
| `X` | <tt>Any</tt> | A batch of input data. |
| **RETURNS** | <tt>Any</tt> | A batch of output data. |
### Model.finish_update {#finish_update tag="method"}
Update parameters using the current parameter gradients. The
[`Optimizer` instance](/docs/api-optimizers) contains the functionality to
perform the stochastic gradient descent.
```python
### Example
from thinc.api import Adam, Linear
optimizer = Adam()
model = Linear(10)
model.finish_update(optimizer)
```
| Argument | Type | Description |
| ----------- | ------------------ | ----------------------------------------------------------------------------- |
| `optimizer` | <tt>Optimizer</tt> | The optimizer, which is called with each parameter and gradient of the model. |
### Model.use_params {#use_params tag="contextmanager"}
Contextmanager to temporarily set the model's parameters to specified values.
| Argument | Type | Description |
| -------- | ---------------------------- | -------------------------------------------------------------------------- |
| `params` | <tt>Dict[int, FloatsXd]</tt> | A dictionary keyed by model IDs, whose values are arrays of weight values. |
### Model.walk {#walk tag="method"}
Iterate out layers of the model, in breadth-first order.
```python
### Example
from thinc.api import Relu
model = Relu(512, normalize=True)
for node in model.walk():
print(node.name)
```

The `walk` method supports three iteration orders through the `order` argument:
- `"bfs"`: breadth-first. Iteration order of the example above: _1 - 2 - 4 - 3 -
5_
- `"dfs_pre"`: depth-first preorder, outputs a node before its children.
Iteration order of the example above: _1 - 2 - 3 - 4 - 5_
- `"dfs_post"`: depth-first postorder, outputs children before a node itself.
Iteration order of the example above: _3 - 2 - 5 - 4 - 1_
| Argument | Type | Description |
| ----------- | ------------------------ | ----------------------------------------------------------------------------------------------------------------------------------------- |
| `order` | <tt>str</tt> | Node iteration order. `"bfs"` (breadth-first), `"dfs_pre"` (depth-first preorder), `"dfs_post"` (depth-first postorder) Default: `"bfs"`. |
| **RETURNS** | <tt>Iterable[Model]</tt> | The layers of the model. |
### Model.remove_node {#remove_node tag="method"}
Remove a node from all layers lists, and then update references. References that
no longer point to a node within the tree will be set to `None`. For instance,
if a node has its grandchild as a reference and the child is removed, the
grandchild reference will be left dangling, so will be set to `None`.
| Argument | Type | Description |
| -------- | -------------- | ------------------- |
| `node` | <tt>Model</tt> | The node to remove. |
### Model.has_dim {#has_dim tag="method"}
Check whether the model has a dimension of a given name. If the dimension is
registered but the value is unset, returns `None`.
```python
### Example
from thinc.api import Linear
import numpy
model = Linear(10)
assert model.has_dim("nI") is None
model.initialize(X=numpy.zeros((128, 16), dtype="f"))
assert model.has_dim("nI") is True
```
| Argument | Type | Description |
| ----------- | ----------------------- | --------------------------------------------- |
| `name` | <tt>str</tt> | The name of the dimension, e.g. `"nO"`. |
| **RETURNS** | <tt>Optional[bool]</tt> | A ternary value (`True`, `False`, or `None`). |
### Model.get_dim {#get_dim tag="method"}
Retrieve the value of a dimension of the given name. Raises a `KeyError` if the
dimension is either unregistered or the value is currently unset.
```python
### Example
from thinc.api import Linear
import numpy
model = Linear(10)
model.initialize(X=numpy.zeros((128, 16), dtype="f"))
assert model.get_dim("nI") == 16
```
| Argument | Type | Description |
| ----------- | ------------ | --------------------------------------- |
| `name` | <tt>str</tt> | The name of the dimension, e.g. `"nO"`. |
| **RETURNS** | <tt>int</tt> | The size of the dimension. |
### Model.maybe_get_dim {#get_dim tag="method"}
Retrieve the value of a dimension of the given name, or `None` if the dimension
is either unregistered or the value is currently unset.
| Argument | Type | Description |
| ----------- | ---------------------- | --------------------------------------- |
| `name` | <tt>str</tt> | The name of the dimension, e.g. `"nO"`. |
| **RETURNS** | <tt>Optional[int]</tt> | The size of the dimension, or `None`. |
### Model.set_dim {#set_dim tag="method"}
Set a value for a dimension. This raises a `ValueError` if the dimension was
previously defined with a different value, unless `force` is set to `True`.
```python
### Example
from thinc.api import Linear
model = Linear(10)
model.set_dim("nI", 16)
assert model.get_dim("nI") == 16
```
| Argument | Type | Description |
| -------- | ------------- | ----------------------------------------------------------------------------------------------------- |
| `name` | <tt>str</tt> | The name of the dimension to set. |
| `value` | <tt>int</tt> | The new value for the dimension. |
| `force` | <tt>bool</tt> | When set to `True`, allow changing the value of the dimension if it was set before. Default: `False`. |
### Model.has_param {#has_param tag="method"}
Check whether the model has a weights parameter of the given name. Returns
`None` if the parameter is registered but currently unset.
```python
### Example
from thinc.api import Linear, zero_init
import numpy
model = Linear(10, init_W=zero_init)
assert model.has_param("W") is None
model.initialize(X=numpy.zeros((128, 16), dtype="f"))
assert model.has_param("W") is True
```
| Argument | Type | Description |
| ----------- | ----------------------- | --------------------------------------------- |
| `name` | <tt>str</tt> | The name of the parameter. |
| **RETURNS** | <tt>Optional[bool]</tt> | A ternary value (`True`, `False`, or `None`). |
### Model.get_param {#get_param tag="method"}
Retrieve a weights parameter by name. Raises a `KeyError` if the parameter is
unregistered or its value is undefined.
```python
### Example
from thinc.api import Linear, zero_init
import numpy
model = Linear(10, init_W=zero_init)
assert model.has_param("W") is None
model.initialize(X=numpy.zeros((128, 16), dtype="f"))
W = model.get_param("W")
assert W.shape == (10, 16)
```
| Argument | Type | Description |
| ----------- | ----------------- | --------------------------------- |
| `name` | <tt>str</tt> | The name of the parameter to get. |
| **RETURNS** | <tt>FloatsXd</tt> | The current parameter. |
### Model.maybe_get_param {#maybe_get_param tag="method"}
Retrieve a weights parameter by name. Returns `None` if the parameter is
unregistered or its value is undefined.
| Argument | Type | Description |
| ----------- | --------------------------- | --------------------------------- |
| `name` | <tt>str</tt> | The name of the parameter to get. |
| **RETURNS** | <tt>Optional[FloatsXd]</tt> | The current parameter, or `None`. |
### Model.set_param {#set_param tag="method"}
Set a weights parameter's value.
```python
### Example
from thinc.api import Linear, zero_init
import numpy
model = Linear(10, init_W=zero_init)
assert model.has_param("W") is None
model.set_param("W", numpy.zeros((10, 16), dtype="f"))
assert model.has_param("W") is True
```
| Argument | Type | Description |
| -------- | --------------------------- | --------------------------------------------- |
| `name` | <tt>str</tt> | The name of the parameter to set a value for. |
| `value` | <tt>Optional[FloatsXd]</tt> | The new value of the parameter. |
### Model.has_ref {#has_ref tag="method"}
Check whether the model has a reference of a given name. If the reference is
registered but the value is unset, returns `None`.
| Argument | Type | Description |
| ----------- | ----------------------- | --------------------------------------------- |
| `name` | <tt>str</tt> | The name of the reference. |
| **RETURNS** | <tt>Optional[bool]</tt> | A ternary value (`True`, `False`, or `None`). |
### Model.get_ref {#get_ref tag="method"}
Retrieve the value of a reference of the given name. Raises a `KeyError` if
unset.
| Argument | Type | Description |
| ----------- | -------------- | -------------------------- |
| `name` | <tt>str</tt> | The name of the reference. |
| **RETURNS** | <tt>Model</tt> | The reference. |
### Model.maybe_get_ref {#maybe_get_ref tag="method"}
Retrieve the value of a reference of the given name, or None if unset.
| Argument | Type | Description |
| ----------- | ------------------------ | -------------------------- |
| `name` | <tt>str</tt> | The name of the reference. |
| **RETURNS** | <tt>Optional[Model]</tt> | The reference, or `None`. |
### Model.set_ref {#set_ref tag="method"}
Set a value for a reference.
| Argument | Type | Description |
| -------- | ------------------------ | -------------------------------- |
| `name` | <tt>str</tt> | The name of the reference. |
| `value` | <tt>Optional[Model]</tt> | The new value for the attribute. |
### Model.has_grad {#has_grad tag="method"}
Check whether the model has a non-zero gradient for the given parameter. If the
gradient is allocated but is zeroed, returns `None`.
| Argument | Type | Description |
| ----------- | ----------------------- | --------------------------------------------- |
| `name` | <tt>str</tt> | The parameter to check the gradient for. |
| **RETURNS** | <tt>Optional[bool]</tt> | A ternary value (`True`, `False`, or `None`). |
### Model.get_grad {#get_grad tag="method"}
Get the gradient for a parameter, if one is available. If the parameter is
undefined or no gradient has been allocated, raises a `KeyError`.
| Argument | Type | Description |
| ----------- | ----------------- | -------------------------------------------------- |
| `name` | <tt>str</tt> | The name of the parameter to get the gradient for. |
| **RETURNS** | <tt>FloatsXd</tt> | The current gradient of the parameter. |
### Model.maybe_get_grad {#maybe_get_grad tag="method"}
Get the gradient for a parameter, if one is available. If the parameter is
undefined or no gradient has been allocated, returns `None`.
| Argument | Type | Description |
| ----------- | --------------------------- | -------------------------------------------------- |
| `name` | <tt>str</tt> | The name of the parameter to get the gradient for. |
| **RETURNS** | <tt>Optional[FloatsXd]</tt> | The current gradient of the parameter, or `None`. |
### Model.set_grad {#set_grad tag="method"}
Set a parameter gradient to a new value.
| Argument | Type | Description |
| -------- | ----------------- | ----------------------------------------------------- |
| `name` | <tt>str</tt> | The name of the parameter to assign the gradient for. |
| `value` | <tt>FloatsXd</tt> | The new gradient. |
### Model.inc_grad {#inc_grad tag="method"}
Increment the gradient of a parameter by `value`.
| Argument | Type | Description |
| -------- | ----------------- | --------------------------------- |
| `name` | <tt>str</tt> | The name of the parameter. |
| `value` | <tt>FloatsXd</tt> | The value to add to its gradient. |
### Model.get_gradients {#get_gradients tag="method"}
Get non-zero gradients of the model's parameters, as a dictionary keyed by the
parameter ID. The values are `(weights, gradients)` tuples.
| Argument | Type | Description |
| ----------- | --------------------------------------------------------- | ------------------------------------ |
| **RETURNS** | <tt>Dict[Tuple[int, str], Tuple[FloatsXd, FloatsXd]]</tt> | The gradients keyed by parameter ID. |
### Model.copy {copy# tag="method"}
Create a copy of the model, its attributes, and its parameters. Any child layers
will also be deep-copied. The copy will receive a distinct `model.id` value.
```python
### Example
from thinc.api import Linear
model = Linear()
model_copy = model.copy()
```
| Argument | Type | Description |
| ----------- | -------------- | ------------------------ |
| **RETURNS** | <tt>Model</tt> | A new copy of the model. |
### Model.to_gpu {#to_gpu tag="method"}
Transfer the model to a given GPU device.
```python
### Example
device = model.to_gpu(0)
```
| Argument | Type | Description |
| ----------- | ------------------------- | ----------------------- |
| `gpu_id` | <tt>int</tt> | Device index to select. |
| **RETURNS** | <tt>cupy.cuda.Device</tt> | The device. |
### Model.to_cpu {#to_cpu tag="method"}
Copy the model to CPU.
```python
### Example
model.to_cpu()
```
### Model.to_dict {#to_dict tag="method"}
Serialize the model to a Python dictionary. `Model.to_bytes` delegates to this
method to create the dict, which it then dumps with MessagePack. Serialization
should round-trip identically, i.e. the same dict should result from loading and
serializing a model.
```python
### Example
model_data = model.to_dict()
```
| Argument | Type | Description |
| ----------- | ------------- | --------------------- |
| **RETURNS** | <tt>dict</tt> | The serialized model. |
### Model.from_dict {#from_dict tag="method"}
Load the model from a Python dictionary.
```python
### Example
model_data = model.to_dict()
model = Model("model_name", forward).from_dict(model_data)
```
| Argument | Type | Description |
| ----------- | -------------- | ----------------- |
| `msg` | <tt>dict</tt> | The data to load. |
| **RETURNS** | <tt>Model</tt> | The loaded model. |
### Model.to_bytes {#to_bytes tag="method"}
Serialize the model to a bytes representation.
<infobox>
Models are usually serialized using `msgpack`, so you should be able to call
`msgpack.loads()` on the data and get back a dictionary with the contents.
Serialization should round-trip identically, i.e. the same bytes should result
from loading and serializing a model.
</infobox>
```python
### Example
bytes_data = model.to_bytes()
```
| Argument | Type | Description |
| ----------- | -------------- | --------------------- |
| **RETURNS** | <tt>bytes</tt> | The serialized model. |
### Model.from_bytes {#from_bytes tag="method"}
Deserialize the model from a bytes representation.
<infobox>
Models are usually serialized using `msgpack`, so you should be able to call
`msgpack.loads()` on the data and get back a dictionary with the contents.
Serialization should round-trip identically, i.e. the same bytes should result
from loading and serializing a model.
</infobox>
```python
### Example
bytes_data = model.to_bytes()
model = Model("model_name", forward).from_bytes(bytes_data)
```
| Argument | Type | Description |
| ------------ | -------------- | ----------------------- |
| `bytes_data` | <tt>bytes</tt> | The bytestring to load. |
| **RETURNS** | <tt>Model</tt> | The loaded model. |
### Model.to_disk {#to_disk tag="method"}
Serialize the model to disk. Most models will serialize to a single file, which
should just be the bytes contents of [`Model.to_bytes`](#to_bytes).
```python
### Example
model.to_disk("/path/to/model")
```
| Argument | Type | Description |
| -------- | ------------------------- | --------------------------------------- |
| `path` | <tt>Union[Path, str]</tt> | File or directory to save the model to. |
### Model.from_disk {#from_disk tag="method"}
Deserialize the model from disk. Most models will serialize to a single file,
which should just be the bytes contents of [`Model.to_bytes`](#to_bytes).
```python
### Example
model = Model().from_disk("/path/to/model")
```
| Argument | Type | Description |
| ----------- | ------------------------- | --------------------------------- |
| `path` | <tt>Union[Path, str]</tt> | Directory to load the model from. |
| **RETURNS** | <tt>Model</tt> | The loaded model. |
### Model.can_from_bytes {#can_from_bytes tag="method"}
Check whether bytes data is compatible with the model for deserialization.
| Argument | Type | Description |
| ------------- | -------------- | --------------------------------------- |
| `bytes_data` | <tt>bytes</tt> | The bytestring to check. |
| `strict` | <tt>bool</tt> | Whether to require attributes to match. |
| **RETURNS** | <tt>bool</tt> | Whether the data is compatible. |
### Model.can_from_bytes {#can_from_bytes tag="method"}
Check whether a path is compatible with the model for deserialization.
| Argument | Type | Description |
| ----------- | ------------------------- | --------------------------------------- |
| `path` | <tt>Union[Path, str]</tt> | The path to check. |
| `strict` | <tt>bool</tt> | Whether to require attributes to match. |
| **RETURNS** | <tt>Model</tt> | Whether the path is compatible. |
### Model.can_from_dict {#from_dict tag="method"}
Check whether a dictionary is compatible with the model for deserialization.
| Argument | Type | Description |
| ----------- | -------------- | --------------------------------------- |
| `msg` | <tt>dict</tt> | The data to check. |
| `strict` | <tt>bool</tt> | Whether to require attributes to match. |
| **RETURNS** | <tt>Model</tt> | Whether the data is compatible. |
---
## Utilities {#util}
### serialize_attr {#serialize_attr tag="function,single-dispatch"}
[Single-dispatch generic function](https://docs.python.org/3/library/functools.html#functools.singledispatch)
that serializes a model attribute in `Model.attrs` to bytes and can be
customized to support other objects and data types. By default, the function
uses MessagePack to serialize the attribute value to bytes. To register a
serialization function for a custom type, you can use the
`@serialize_attr.register` decorator and call it with the custom type. If an
attribute of that type exists on a model, the registered function will be used
to serialize it.
```python
### Example
from thinc.api import serialize_attr
@serialize_attr.register(MyCustomClass)
def serialize_my_custom_class(_, value: MyCustomClass, name: str, model) -> bytes:
# value is an instance of MyCustomClass that needs to be serialized. You
# can perform any custom serialization here and return bytes
return value.custom_serialization_method()
```
| Argument | Type | Description |
| ----------- | -------------- | --------------------------------------------------------------------------------------------------------------------------- |
| `_` | <tt>Any</tt> | An instance of the value to serialize. Its type will be used to determine which registered serialization function to apply. |
| `value` | <tt>Any</tt> | The value to serialize. |
| `name` | <tt>str</tt> | The attribute name. |
| `model` | <tt>Model</tt> | The model that's being serialized, e.g. to retrieve other information. |
| **RETURNS** | <tt>bytes</tt> | The serialized attribute. |
### deserialize_attr {#deserialize_attr tag="function,single-dispatch"}
[Single-dispatch generic function](https://docs.python.org/3/library/functools.html#functools.singledispatch)
that deserializes a model attribute in `Model.attrs` from bytes and can be
customized to support other objects and data types. By default, the function
uses MessagePack to load the attribute value from bytes. To register a
deserialization function for a custom type, you can use the
`@deserialize_attr.register` decorator and call it with the custom type. If an
attribute of that type exists on a model, the registered function will be used
to deserialize it.
```python
### Example
from thinc.api import deserialize_attr
@deserialize_attr.register(MyCustomClass)
def deserialize_my_custom_class(_, value: bytes, name: str, model) -> MyCustomClass:
# value is a bytestring that needs to be deserialized and transformed into
# MyCustomClass. You can perform any custom deserialization here and return
# an instance of MyCustomClass.
return MyCustomClass().custom_load_method(value)
```
<infobox variant="warning">
Since the type of the attribute is used to determine the deserialization
function to use, attributes of custom types need **a default value of the same
type**. For example, creating a `Model` with `attrs={"custom_attr": None}` won't
work, because there's no way to tell that the attribute should be an instance of
`MyCustomClass` (and deserialized as such). Using
`attrs={"custom_attr": MyCustomClass()}` makes this clear and also means you
won't have to handle `None` attrs in your model.
</infobox>
| Argument | Type | Description |
| ----------- | -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `_` | <tt>Any</tt> | An instance of the value to deserialize (the default value of the attribute). Its type will be used to determine which registered deserialization function to apply. |
| `value` | <tt>bytes</tt> | The bytestring to load. |
| `name` | <tt>str</tt> | The attribute name. |
| `model` | <tt>Model</tt> | The model that's being deserialized, e.g. to perform other side-effects. |
| **RETURNS** | <tt>Any</tt> | The loaded attribute. |
---
## Shim {#shim tag="class"}
Define a basic interface for external models. Users can create subclasses of
`Shim` to wrap external libraries. The Thinc `Model` class treats `Shim` objects
as a sort of special type of sublayer: it knows they're not actual Thinc `Model`
instances, but it also knows to talk to the shim instances when doing things
like using transferring between devices, loading in parameters, optimization. It
also knows `Shim` objects need to be serialized and deserialized with to/from
bytes/disk, rather than expecting that they'll be `msgpack`-serializable. A
`Shim` can implement the following methods:
| Method | Description |
| ---------------- | ------------------------------------------------------------------------------------------------------ |
| `__init__` | Initialize the model. |
| `__call__` | Call the model and return the output and a callback to compute the gradients via backpropagation. |
| `predict` | Call the model and return only the output, instead of the `(output, callback)` tuple. |
| `begin_update` | Run the model over a batch of data, returning the output and a callback to complete the backward pass. |
| `finish_update` | Update parameters with current gradients. |
| `use_params` | Context manager to temporarily set the model's parameters to specified values. |
| `to_gpu` | Transfer the model to a given GPU device. |
| `to_cpu` | Copy the model to CPU. |
| `to_bytes` | Serialize the model to bytes. |
| `from_bytes` | Load the model from bytes. |
| `to_disk` | Serialize the model to disk. Defaults to writing the bytes representation to a file. |
| `from_disk` | Load the model from disk. Defaults to loading the byte representation from a file. |
### Available shims {#shims}
<infobox variant="warning">
A shim container is **not** a Thinc `Model` subclass itself, it's a subclass of
`Shim`.
</infobox>
| | |
| ----------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `PyTorchShim` | Interface between a [PyTorch](https://pytorch.org) model and a Thinc `Model`. For more details and examples, see the [`PyTorchWrapper` layer](/docs/api-layers#pytorchwrapper) and docs on [integrating other frameworks](/docs/usage-frameworks). |
| `TorchScriptShim` | Interface between a [TorchScript](https://pytorch.org/docs/stable/jit.html) model and a Thinc `Model`. For more details and examples, see the [`TorchScriptWrapper` layer](/docs/api-layers#torchscriptwrapper) and docs on [integrating other frameworks](/docs/usage-frameworks). |
| `TensorFlowShim` | Interface between a [TensorFlow](https://tensorflow.org) model and a Thinc `Model`. For more details, see the [`TensorFlowWrapper` layer](/docs/api-layers#tensorflowwrapper) and docs on [integrating other frameworks](/docs/usage-frameworks) |
| `MXNetShim` | Interface between a [MXNet](https://mxnet.apache.org/) model and a Thinc `Model`. For more details, see the [`MXNetWrapper` layer](/docs/api-layers#mxnetwrapper) and docs on [integrating other frameworks](/docs/usage-frameworks) |
|