1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
---
title: Utilities & Extras
teaser: Helpers and utility functions
---
### fix_random_seed {#fix_random_seed tag="function"}
Set the random seed for `random`, `numpy.random` and `cupy.random` (if
available). Should be called at the top of a file or function.
```python
### Example
from thinc.api import fix_random_seed
fix_random_seed(0)
```
| Argument | Type | Description |
| -------- | ------------ | -------------------------- |
| `seed` | <tt>int</tt> | The seed. Defaults to `0`. |
### require_cpu {#require_cpu tag="function"}
Allocate data and perform operations on CPU. If data has already been allocated
on GPU, it will not be moved. Ideally, this function should be called right
after importing Thinc.
```python
### Example
from thinc.api import require_cpu
require_cpu()
```
| Argument | Type | Description |
| ----------- | ------------- | ----------- |
| **RETURNS** | <tt>bool</tt> | `True`. |
### prefer_gpu {#prefer_gpu tag="function"}
Allocate data and perform operations on GPU, if available. If data has already
been allocated on CPU, it will not be moved. Ideally, this function should be
called right after importing Thinc.
```python
### Example
from thinc.api import prefer_gpu
is_gpu = prefer_gpu()
```
| Argument | Type | Description |
| ----------- | ------------- | ---------------------------------------- |
| `gpu_id` | <tt>int</tt> | Device index to select. Defaults to `0`. |
| **RETURNS** | <tt>bool</tt> | Whether the GPU was activated. |
### require_gpu {#require_gpu tag="function"}
Allocate data and perform operations on GPU. Will raise an error if no GPU is
available. If data has already been allocated on CPU, it will not be moved.
Ideally, this function should be called right after importing Thinc.
```python
### Example
from thinc.api import require_gpu
require_gpu()
```
| Argument | Type | Description |
| ----------- | ------------- | ----------- |
| **RETURNS** | <tt>bool</tt> | `True`. |
### set_active_gpu {#set_active_gpu tag="function"}
Set the current GPU device for `cupy` (and for `torch`, if installed) and return
a `cupy` device. Will raise an error if no GPU is available.
```python
### Example
from thinc.api import set_active_gpu
set_active_gpu(0)
```
| Argument | Type | Description |
| ----------- | ------------------------- | ----------------------- |
| `gpu_id` | <tt>int</tt> | Device index to select. |
| **RETURNS** | <tt>cupy.cuda.Device</tt> | The device. |
### use_pytorch_for_gpu_memory {#use_pytorch_for_gpu_memory tag="function"}
Route GPU memory allocation via PyTorch. This is recommended for using PyTorch
and `cupy` together, as otherwise OOM errors can occur when there's available
memory sitting in the other library's pool. We'd like to support routing
TensorFlow memory allocation via PyTorch as well (or vice versa), but do not
currently have an implementation for it.
```python
### Example
from thinc.api import prefer_gpu, use_pytorch_for_gpu_memory
if prefer_gpu():
use_pytorch_for_gpu_memory()
```
### use_tensorflow_for_gpu_memory {#use_tensorflow_for_gpu_memory tag="function"}
Route GPU memory allocation via TensorFlow. This is recommended for using
TensorFlow and `cupy` together, as otherwise OOM errors can occur when there's
available memory sitting in the other library's pool. We'd like to support
routing PyTorch memory allocation via TensorFlow as well (or vice versa), but do
not currently have an implementation for it.
```python
### Example
from thinc.api import prefer_gpu, use_tensorflow_for_gpu_memory
if prefer_gpu():
use_tensorflow_for_gpu_memory()
```
### get_width {#get_width tag="function"}
Infer the width of a batch of data, which could be any of: an n-dimensional
array (use the shape) or a sequence of arrays (use the shape of the first
element).
| Argument | Type | Description |
| -------------- | ---------------------------------------------------------- | ------------------------------------------------------ |
| `X` | <tt>Union[ArrayXd, Ragged, Padded, Sequence[ArrayXd]]</tt> | The array(s). |
| _keyword-only_ | | |
| `dim` | <tt>int</tt> | Which dimension to get the size for. Defaults to `-1`. |
| **RETURNS** | <tt>int</tt> | The array's inferred width. |
### to_categorical {#to_categorical tag="function"}
Converts a class vector (integers) to binary class matrix. Based on
[`keras.utils.to_categorical`](https://keras.io/utils/).
| Argument | Type | Description |
| ----------------- | ---------------------- | ---------------------------------------------------------------------------------------------- |
| `Y` | <tt>IntsXd</tt> | Class vector to be converted into a matrix (integers from `0` to `n_classes`). |
| `n_classes` | <tt>Optional[int]</tt> | Total number of classes. |
| _keyword-only_ | | |
| `label_smoothing` | <tt>float</tt> | Smoothing-coefficient for label-smoothing. |
| **RETURNS** | <tt>Floats2d</tt> | A binary matrix representation of the input. The axis representing the classes is placed last. |
### enable_mxnet {#enable_mxnet tag="function" new="8.2.0"}
Import and enable internal support for MXNet.
### enable_tensorflow {#enable_tensorflow tag="function" new="8.2.0"}
Import and enable internal support for TensorFlow.
### xp2torch {#xp2torch tag="function"}
Convert a `numpy` or `cupy` tensor to a PyTorch tensor.
| Argument | Type | Description |
| --------------- | --------------------- | ---------------------------------------------- |
| `xp_tensor` | <tt>ArrayXd</tt> | The tensor to convert. |
| `requires_grad` | <tt>bool</tt> | Whether to backpropagate through the variable. |
| **RETURNS** | <tt>torch.Tensor</tt> | The converted tensor. |
### torch2xp {#torch2xp tag="function"}
Convert a PyTorch tensor to a `numpy` or `cupy` tensor.
| Argument | Type | Description |
| -------------- | --------------------- | ---------------------- |
| `torch_tensor` | <tt>torch.Tensor</tt> | The tensor to convert. |
| **RETURNS** | <tt>ArrayXd</tt> | The converted tensor. |
### xp2tensorflow {#xp2tensorflow tag="function"}
Convert a `numpy` or `cupy` tensor to a TensorFlow tensor.
| Argument | Type | Description |
| --------------- | -------------------------- | ----------------------------------------------------- |
| `xp_tensor` | <tt>ArrayXd</tt> | The tensor to convert. |
| `requires_grad` | <tt>bool</tt> | Whether to backpropagate through the variable. |
| `as_variable` | <tt>bool</tt> | Convert the result to a `tensorflow.Variable` object. |
| **RETURNS** | <tt>tensorflow.Tensor</tt> | The converted tensor. |
### tensorflow2xp {#tensorflow2xp tag="function"}
Convert a TensorFlow tensor to a `numpy` or `cupy` tensor.
| Argument | Type | Description |
| ------------------- | -------------------------- | ---------------------- |
| `tensorflow_tensor` | <tt>tensorflow.Tensor</tt> | The tensor to convert. |
| **RETURNS** | <tt>ArrayXd</tt> | The converted tensor. |
### xp2mxnet {#xp2mxnet tag="function"}
Convert a `numpy` or `cupy` tensor to an MXNet tensor.
| Argument | Type | Description |
| --------------- | ---------------------- | ---------------------------------------------- |
| `xp_tensor` | <tt>ArrayXd</tt> | The tensor to convert. |
| `requires_grad` | <tt>bool</tt> | Whether to backpropagate through the variable. |
| **RETURNS** | <tt>mx.nd.NDArray</tt> | The converted tensor. |
### mxnet2xp {#mxnet2xp tag="function"}
Convert an MXNet tensor to a `numpy` or `cupy` tensor.
| Argument | Type | Description |
| ----------- | ---------------------- | ---------------------- |
| `mx_tensor` | <tt>mx.nd.NDArray</tt> | The tensor to convert. |
| **RETURNS** | <tt>ArrayXd</tt> | The converted tensor. |
### Errors {#errors}
Thinc uses the following custom errors:
| Name | Description |
| ----------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `ConfigValidationError` | Raised if invalid config settings are encountered by [`Config`](/docs/api-config#config) or the [`registry`](/docs/api-config#registry), or if resolving and validating the referenced functions fails. |
| `DataValidationError` | Raised if [`Model.initialize`](/docs/api-model#initialize) is called with sample input or output data that doesn't match the expected input or output of the network, or leads to mismatched input or output in any of its layer. |
|