1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
# (C) Copyright 2004-2023 Enthought, Inc., Austin, TX
# All rights reserved.
#
# This software is provided without warranty under the terms of the BSD
# license included in LICENSE.txt and may be redistributed only under
# the conditions described in the aforementioned license. The license
# is also available online at http://www.enthought.com/licenses/BSD.txt
#
# Thanks for using Enthought open source!
"""This demo shows how to use Traits TreeEditors with PyTables to walk the
hierarchy of an HDF5 file. This only picks out tables, arrays and groups, but could
easily be extended to other structures.
In the demo, the path to the selected item is printed whenever the selection
changes. An example HDF5 file is provided here, but you could easily change
the path given at the bottom of this file to a path to your own HDF5 file.
To run this demonstration successfully, you must have the following packages
installed:
- **PyTables** (``tables``)
- **HDF5 for Python** (``h5py``)
Note that PyTables can't read HDF5 files created with h5py,
but h5py can read HDF5 files created with PyTables. See HDF5_tree_demo2 for
an example using h5py.
"""
import os
import tables as tb
from traits.api import HasTraits, Str, List, Instance, Any
from traitsui.api import TreeEditor, TreeNode, View, Item, Group
ROOT = os.path.dirname(__file__)
# View for objects that aren't edited
no_view = View()
# HDF5 Nodes in the tree
class Hdf5ArrayNode(HasTraits):
name = Str('<unknown>')
path = Str('<unknown>')
parent_path = Str('<unknown>')
class Hdf5GroupNode(HasTraits):
name = Str('<unknown>')
path = Str('<unknown>')
parent_path = Str('<unknown>')
# Can't have recursive traits? Really?
# groups = List(Hdf5GroupNode)
groups = List()
arrays = List(Hdf5ArrayNode)
groups_and_arrays = List()
class Hdf5FileNode(HasTraits):
name = Str('<unknown>')
path = Str('/')
groups = List(Hdf5GroupNode)
arrays = List(Hdf5ArrayNode)
groups_and_arrays = List()
# Recursively build tree, there is probably a better way of doing this.
def _get_sub_arrays(group, h5file):
"""Return a list of all arrays immediately below a group in an HDF5 file."""
return [
Hdf5ArrayNode(
name=array._v_name,
path=array._v_pathname,
parent_path=array._v_parent._v_pathname,
)
for array in group
if isinstance(array, (tb.Array, tb.Table))
] # More pythonic
# for array in h5file.iter_nodes(group, classname='Array')] # Old call
def _get_sub_groups(group, h5file):
"""Return a list of all groups and arrays immediately below a group in an HDF5 file."""
subgroups = []
for subgroup in h5file.iter_nodes(group, classname='Group'):
subsubgroups = _get_sub_groups(subgroup, h5file)
subsubarrays = _get_sub_arrays(subgroup, h5file)
subgroups.append(
Hdf5GroupNode(
name=subgroup._v_name,
path=subgroup._v_pathname,
parent_path=subgroup._v_parent._v_pathname,
groups=subsubgroups,
arrays=subsubarrays,
groups_and_arrays=subsubgroups + subsubarrays,
)
)
return subgroups
def _hdf5_tree(filename):
"""Return a list of all groups and arrays below the root group of an HDF5 file."""
with tb.open_file(filename, 'r') as h5file:
subgroups = _get_sub_groups(h5file.root, h5file)
subarrays = _get_sub_arrays(h5file.root, h5file)
h5_tree = Hdf5FileNode(
name=filename,
groups=subgroups,
arrays=subarrays,
groups_and_arrays=subgroups + subarrays,
)
return h5_tree
# Get a tree editor
def _hdf5_tree_editor(selected=''):
"""Return a TreeEditor specifically for HDF5 file trees."""
return TreeEditor(
nodes=[
TreeNode(
node_for=[Hdf5FileNode],
auto_open=True,
children='groups_and_arrays',
label='name',
view=no_view,
),
TreeNode(
node_for=[Hdf5GroupNode],
auto_open=False,
children='groups_and_arrays',
label='name',
view=no_view,
),
TreeNode(
node_for=[Hdf5ArrayNode],
auto_open=False,
children='',
label='name',
view=no_view,
),
],
editable=False,
selected=selected,
)
class ATree(HasTraits):
h5_tree = Instance(Hdf5FileNode)
node = Any()
traits_view = View(
Group(
Item(
'h5_tree',
editor=_hdf5_tree_editor(selected='node'),
resizable=True,
show_label=False,
),
orientation='vertical',
),
title='HDF5 Tree Example',
buttons=['Undo', 'OK', 'Cancel'],
resizable=True,
width=0.3,
height=0.3,
)
def _node_changed(self):
print(self.node.path)
def make_test_datasets():
"""Makes the test datasets and store it in the current folder"""
import h5py
import numpy as np
import pandas as pd # pandas uses pytables to store datasets in hdf5 format.
from random import randrange
n = 100
df = pd.DataFrame(
dict(
[
("int{0}".format(i), np.random.randint(0, 10, size=n))
for i in range(5)
]
)
)
df['float'] = np.random.randn(n)
for i in range(10):
df["object_1_{0}".format(i)] = [
'%08x' % randrange(16 ** 8) for _ in range(n)
]
for i in range(7):
df["object_2_{0}".format(i)] = [
'%15x' % randrange(16 ** 15) for _ in range(n)
]
df.info()
df.to_hdf('test_fixed.h5', 'data', format='fixed')
df.to_hdf('test_table_no_dc.h5', 'data', format='table')
df.to_hdf('test_table_dc.h5', 'data', format='table', data_columns=True)
df.to_hdf(
'test_fixed_compressed.h5',
'data',
format='fixed',
complib='blosc',
complevel=9,
)
# h5py dataset
time = np.arange(n)
x = np.linspace(-7, 7, n)
axes_latlon = [
('time', time),
('coordinate', np.array(['lat', 'lon'], dtype='S3')),
]
axes_mag = [
('time', time),
('direction', np.array(['x', 'y', 'z'], dtype='S1')),
]
latlon = np.vstack(
(np.linspace(-0.0001, 0.00001, n) + 23.8, np.zeros(n) - 82.3)
).T
mag_data = np.vstack(
(
-(1 - np.tanh(x) ** 2) * np.sin(2 * x),
-(1 - np.tanh(x) ** 2) * np.sin(2 * x),
-(1 - np.tanh(x) ** 2),
)
).T
datasets = (
axes_mag
+ axes_latlon
+ [('magnetic_3_axial', mag_data), ('latlon', latlon)]
)
with h5py.File(os.path.join(ROOT, 'test_h5pydata.h5'), "a") as h5file:
h5group = h5file.require_group("run1_test1")
for data_name, data in datasets:
h5group.require_dataset(
name=data_name,
dtype=data.dtype,
shape=data.shape,
data=data,
# **options
)
def main():
import sys
filename = os.path.join(ROOT, 'test_fixed.h5')
filename = os.path.join(ROOT, 'test_table_no_dc.h5')
if len(sys.argv) > 1:
filename = sys.argv[1]
a_tree = ATree(h5_tree=_hdf5_tree(filename))
return a_tree
demo = main()
if __name__ == '__main__':
# make_test_datasets()
demo.configure_traits()
|