1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
r"""
Installation requirements:
pip install trame trame-vuetify trame-vega altair pandas numpy
"""
from itertools import cycle
import altair as alt
import numpy as np
import pandas as pd
from trame.app import get_server
from trame.ui.vuetify import SinglePageLayout
from trame.widgets import vega, vuetify
# -----------------------------------------------------------------------------
# Trame setup
# -----------------------------------------------------------------------------
server = get_server(client_type="vue2")
state, ctrl = server.state, server.controller
# --------------------------------------------------------------------------------
# Making dataframe
# --------------------------------------------------------------------------------
np.random.seed(4)
DATA_FRAME = None
def fetch_data(samples=15):
global DATA_FRAME
deltas = cycle(
[
pd.Timedelta(weeks=-2),
pd.Timedelta(days=-1),
pd.Timedelta(hours=-1),
pd.Timedelta(0),
pd.Timedelta(minutes=5),
pd.Timedelta(seconds=10),
pd.Timedelta(microseconds=50),
pd.Timedelta(microseconds=10),
]
)
dummy_data = {
"id": range(samples),
"date_time_naive": pd.date_range("2021-01-01", periods=samples),
"apple": np.random.randint(0, 100, samples) / 3.0,
"banana": np.random.randint(0, 100, samples) / 5.0,
"chocolate": np.random.randint(0, 100, samples),
"group": np.random.choice(["A", "B"], size=samples),
"season": np.random.choice(
["Spring", "Summer", "Fall", "Winter"], size=samples
),
"date_only": pd.date_range("2020-01-01", periods=samples).date,
"timedelta": [next(deltas) for i in range(samples)],
"date_tz_aware": pd.date_range(
"2022-01-01", periods=samples, tz="Asia/Katmandu"
),
}
DATA_FRAME = pd.DataFrame(dummy_data)
return DATA_FRAME
fetch_data()
# --------------------------------------------------------------------------------
# Preparing table
# --------------------------------------------------------------------------------
header_options = {"apple": {"sortable": False}}
headers, rows = vuetify.dataframe_to_grid(DATA_FRAME, header_options)
table = {
"headers": ("headers", headers),
"items": ("rows", rows),
"v_model": ("selection", []),
"search": ("query", ""),
"classes": "elevation-1 ma-4",
"multi_sort": True,
"dense": True,
"show_select": True,
"single_select": False,
"item_key": "id",
}
# --------------------------------------------------------------------------------
# Describing chart
# --------------------------------------------------------------------------------
@state.change("selection")
def selection_change(selection=[], **kwargs):
global DATA_FRAME
selected_df = pd.DataFrame(selection)
# Chart
chart_data = DATA_FRAME.loc[
:, ["date_time_naive", "apple", "banana", "chocolate"]
].assign(source="total")
if not selected_df.empty:
selected_data = selected_df.loc[
:, ["date_time_naive", "apple", "banana", "chocolate"]
].assign(source="selection")
chart_data = pd.concat([chart_data, selected_data])
chart_data = pd.melt(
chart_data,
id_vars=["date_time_naive", "source"],
var_name="item",
value_name="quantity",
)
chart = (
alt.Chart(chart_data)
.mark_bar()
.encode(
x=alt.X("item:O"),
y=alt.Y("sum(quantity):Q", stack=False),
color=alt.Color("source:N", scale=alt.Scale(domain=["total", "selection"])),
)
).properties(width="container", height=100)
ctrl.fig_update(chart)
# --------------------------------------------------------------------------------
# GUI
# --------------------------------------------------------------------------------
with SinglePageLayout(server) as layout:
layout.title.set_text("Vuetify table example")
with layout.toolbar:
vuetify.VSpacer()
vuetify.VTextField(
v_model=("query",),
placeholder="Search",
dense=True,
hide_details=True,
prepend_icon="mdi-magnify",
)
with layout.content:
with vuetify.VRow(classes="justify-center ma-6"):
fig = vega.Figure(classes="ma-2", style="width: 100%;")
ctrl.fig_update = fig.update
vuetify.VDataTable(**table)
# -----------------------------------------------------------------------------
# Start server
# -----------------------------------------------------------------------------
if __name__ == "__main__":
server.start()
|