1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
|
# Application

In the following we will create a more complete example application to demonstrate how to use several parts the ***trame*** library. Developing a trame application requires the following coding steps:
1. [Imports](#imports-id) for appropriate ***trame*** and vtk modules
2. Create the necessary [VTK pipelines](#vtk_pipeline-id)
3. Build [***trame*** Views](#trame_view-id)
4. Define the the [GUI](#gui-id) components required for interaction
5. Develop the [callbacks](#callbacks-id) for the GUI components
6. [Start](#start-id) the application
We will start by editing `04_application/app.py` which contain the basic structure of a **trame** app with the VTK rendering code base.
<div class="print-break"></div>
<a id="imports-id"></a>
## Imports
**First**, our ***trame*** imports have also changed. Thus, we will replace
```python
from trame.layouts import SinglePage
from trame.html import vtk, vuetify
```
with
```python
from trame.app import get_server
from trame.ui.vuetify import SinglePageLayout
from trame.widgets import vtk, vuetify, trame
```
But because we are adding `trame` to the list of widgets, we should add it to our environment by running
```sh
pip install trame-components
```
We are creating a single page application with a drawer (`trame.ui.vuetify`), and we want to use one of ***trame***'s predefined widgets (`trame.widgets`) for displaying and interacting with visualization pipelines.
**Finally**, our VTK pipelines are fairly straight forward, but not available as one of the VTK examples. We will add the import for our VTK objects.
```python
from vtkmodules.vtkCommonDataModel import vtkDataObject
from vtkmodules.vtkFiltersCore import vtkContourFilter
from vtkmodules.vtkIOXML import vtkXMLUnstructuredGridReader
from vtkmodules.vtkRenderingAnnotation import vtkCubeAxesActor
```
to create a three-dimensional (3D) mesh, a contour, and a cube axes legend to outline the computational domain.
<a id="vtk_pipeline-id"></a>
## VTK Pipelines
**First**, we read the data using the `vtkXMLUnstructuredGridReader` and the full file path, provided by adding `CURRENT_DIRECTORY` to the beginning of the relative file path.
```python
# Read Data
reader = vtkXMLUnstructuredGridReader()
reader.SetFileName(os.path.join(CURRENT_DIRECTORY, "../data/disk_out_ref.vtu"))
reader.Update()
```
<div class="print-break"></div>
**Second**, we determine the available data arrays and build an array of dictionaries, `dataset_arrays` that contains the array name, value or id, range, and type (point or cell data). We also define the default array and the default minimum and maximum of the default array.
```python
# Extract Array/Field information
dataset_arrays = []
fields = [
(reader.GetOutput().GetPointData(), vtkDataObject.FIELD_ASSOCIATION_POINTS),
(reader.GetOutput().GetCellData(), vtkDataObject.FIELD_ASSOCIATION_CELLS),
]
for field in fields:
field_arrays, association = field
for i in range(field_arrays.GetNumberOfArrays()):
array = field_arrays.GetArray(i)
array_range = array.GetRange()
dataset_arrays.append(
{
"text": array.GetName(),
"value": i,
"range": list(array_range),
"type": association,
}
)
default_array = dataset_arrays[0]
default_min, default_max = default_array.get("range")
```
The `dataset_arrays` and defaults are used in several places of the initial pipelines, but we plan to enable switching between the available arrays for coloring and contouring.
**Third**, we create the *mesh* pipeline, which is simply a `vtkDataSetMapper` and a `vtkActor` that we add to the `renderer`.
```python
# Mesh
mesh_mapper = vtkDataSetMapper()
mesh_mapper.SetInputConnection(reader.GetOutputPort())
mesh_actor = vtkActor()
mesh_actor.SetMapper(mesh_mapper)
renderer.AddActor(mesh_actor)
```
We want to be able to change the mesh representation, so we get a handle on the `mesh_actor` property and set the representation to surface, set the default point size, and turn off edge visibility.
```python
# Mesh: Setup default representation to surface
mesh_actor.GetProperty().SetRepresentationToSurface()
mesh_actor.GetProperty().SetPointSize(1)
mesh_actor.GetProperty().EdgeVisibilityOff()
```
We also want to be able to change the mesh color map, so we get a handle on the mesh's color lookup table and set the hue, saturation, and value ranges to create a rainbow color map, and build it.
```python
# Mesh: Apply rainbow color map
mesh_lut = mesh_mapper.GetLookupTable()
mesh_lut.SetHueRange(0.666, 0.0)
mesh_lut.SetSaturationRange(1.0, 1.0)
mesh_lut.SetValueRange(1.0, 1.0)
mesh_lut.Build()
```
We finally want to be able to change how to color the array or field data, so we retrieve a handle on the mesh's mapper and set the array to color by and the range of the array to the defaults, tell the mapper to use the appropriate scalar mode for the array, turn on the scalar visibility, and tell the mapper to use the scalar range assigned to the lookup table.
<div class="print-break"></div>
```python
# Mesh: Color by default array
mesh_mapper.SelectColorArray(default_array.get("text"))
mesh_mapper.GetLookupTable().SetRange(default_min, default_max)
if default_array.get("type") == vtkDataObject.FIELD_ASSOCIATION_POINTS:
mesh_mapper.SetScalarModeToUsePointFieldData()
else:
mesh_mapper.SetScalarModeToUseCellFieldData()
mesh_mapper.SetScalarVisibility(True)
mesh_mapper.SetUseLookupTableScalarRange(True)
```
**Fourth**, we create the *contour* pipeline, which uses a `vtkContourFilter`, a `vtkDataSetMapper`, and a `vtkActor` that we add to the `renderer`.
```python
# Contour
contour = vtkContourFilter()
contour.SetInputConnection(reader.GetOutputPort())
contour_mapper = vtkDataSetMapper()
contour_mapper.SetInputConnection(contour.GetOutputPort())
contour_actor = vtkActor()
contour_actor.SetMapper(contour_mapper)
renderer.AddActor(contour_actor)
```
We want to be able to change the array or field to contour by, so we define the initial value as the midpoint between the default minimum and maximum of the default array, set the default array as the input array, and set the computed contour value.
```python
# Contour: ContourBy default array
contour_value = 0.5 * (default_max + default_min)
contour.SetInputArrayToProcess(
0, 0, 0, default_array.get("type"), default_array.get("text")
)
contour.SetValue(0, contour_value)
```
We want to be able to change the contour representation, the contour color map, and the array to color by, so we initialize these defaults as we did for the *mesh* pipeline.
```python
# Contour: Setup default representation to surface
contour_actor.GetProperty().SetRepresentationToSurface()
contour_actor.GetProperty().SetPointSize(1)
contour_actor.GetProperty().EdgeVisibilityOff()
# Contour: Apply rainbow color map
contour_lut = contour_mapper.GetLookupTable()
contour_lut.SetHueRange(0.666, 0.0)
contour_lut.SetSaturationRange(1.0, 1.0)
contour_lut.SetValueRange(1.0, 1.0)
contour_lut.Build()
# Contour: Color by default array
contour_mapper.SelectColorArray(default_array.get("text"))
contour_mapper.GetLookupTable().SetRange(default_min, default_max)
if default_array.get("type") == vtkDataObject.FIELD_ASSOCIATION_POINTS:
contour_mapper.SetScalarModeToUsePointFieldData()
else:
contour_mapper.SetScalarModeToUseCellFieldData()
contour_mapper.SetScalarVisibility(True)
contour_mapper.SetUseLookupTableScalarRange(True)
```
**Fifth**, we create the cube axes, which is a `vtkCubeAxesActor` that we add to the `renderer`.
```python
# Cube Axes
cube_axes = vtkCubeAxesActor()
renderer.AddActor(cube_axes)
```
The `vtkCubeAxesActor` requires initialization by the bounds of the domain and the `renderer` camera.
```python
# Cube Axes: Boundaries, camera, and styling
cube_axes.SetBounds(mesh_actor.GetBounds())
cube_axes.SetCamera(renderer.GetActiveCamera())
cube_axes.SetXLabelFormat("%6.1f")
cube_axes.SetYLabelFormat("%6.1f")
cube_axes.SetZLabelFormat("%6.1f")
cube_axes.SetFlyModeToOuterEdges()
```
**Finally**, we reset the `renderer` camera to initialize the view.
```python
renderer.ResetCamera()
```
<div class="print-break"></div>
<a id="trame_view-id"></a>
## ***trame*** Views
For this application, we want to enable dynamic switching between *local* and *remote* rendering. Thus, we will be using `vtk.VtkRemoteLocalView` which internally manage a *local* and *remote* ***trame*** view.
**Note**: The `interactive_ratio` implies the desired image reduction fraction to enhance the frames per second during interaction. Here we set it to 1, which means the image will not be reduced.
<a id="gui-id"></a>
## GUI
We are creating a single page application with a drawer using `SinglePageWithDrawer`. By default we get a title, toolbar, drawer, and a content section. So we instantiate a `SinglePageWithDrawer` with the `title` of "Viewer" and `on_ready` argument equal to `html_view.update`, which updates the three-dimensional visualization.
```python
with SinglePageWithDrawerLayout(server) as layout:
layout.title.set_text("Viewer")
with layout.toolbar:
# toolbar components
pass
with layout.drawer as drawer:
# drawer components
pass
with layout.content:
# content components
with vuetify.VContainer(
fluid=True,
classes="pa-0 fill-height",
):
view = vtk.VtkRemoteLocalView(renderWindow, namespace="view", mode="local", interactive_ratio=1)
ctrl.view_update = view.update # capture view update method
ctrl.view_reset_camera = view.reset_camera # capture view reset_camera method
```
**Note**: The `layout.drawer as drawer` syntax is used to get a reference to the drawer to set some of the drawer's properties.
<div class="print-break"></div>
<a id="gui_toolbar-id"></a>
### Toolbar GUI

We want to create a toolbar with the application logo and title on one end and some standard buttons separated by a vertical divider on the other end. The `VSpacer` is used to push the content the right-side of the application toolbar, and the `VDivider` is used to create the vertical divider, and method `standard_buttons` encapsulates the GUI code to produce these buttons.
```python
with layout.toolbar:
# toolbar components
vuetify.VSpacer()
vuetify.VDivider(vertical=True, classes="mx-2")
standard_buttons()
```

Three of the buttons have on/off states, so we will use a `VCheckbox` with the `on_icon` and `off_icon` properties and the `v_model` callback to switch between these states. The `resetCamera` button is just using the controller function to allow out-of-order initialization.
```python
def standard_buttons():
vuetify.VCheckbox(
v_model=("cube_axes_visibility", True),
on_icon="mdi-cube-outline",
off_icon="mdi-cube-off-outline",
classes="mx-1",
hide_details=True,
dense=True,
)
vuetify.VCheckbox(
v_model="$vuetify.theme.dark",
on_icon="mdi-lightbulb-off-outline",
off_icon="mdi-lightbulb-outline",
classes="mx-1",
hide_details=True,
dense=True,
)
vuetify.VCheckbox(
v_model=("viewMode", "local"), # VtkRemoteLocalView => {namespace}Mode=['local', 'remote']
on_icon="mdi-lan-disconnect",
off_icon="mdi-lan-connect",
true_value="local",
false_value="remote",
classes="mx-1",
hide_details=True,
dense=True,
)
with vuetify.VBtn(icon=True, click=ctrl.view_reset_camera):
vuetify.VIcon("mdi-crop-free")
```
The `dark` checkbox is as the previous examples using built-in *Vuetify* (`$vuetify.theme.dark`) reactive variable.
The `viewMode` checkbox is used to switch between the *local* and *remote* rendering, and leverages the `VtkRemoteLocalView` mode. The `cube_axes_visibility` checkbox is used to turn on and off the cube axes, and leverages the [`cube_axes_visibility` callback](#toolbar_callbacks_cube_axes_visibility-id).
<a id="gui_drawer-id"></a>
### Drawer GUI
{ width=35% }
We want to create a drawer with the ***trame*** pipeline widget, a horizontal divider, and pipeline cards. The pipeline cards are shown corresponding to the selected pipeline in the ***trame*** pipeline widget. We need create state for the active pipeline card, so we add this to the shared state that can be updated on the state directly.
```python
# State use to track active UI card
state.setdefault("active_ui", None) # prevent resetting value if already present
```
We want a little wider `drawer`, so we set the width to 325 pixels. Next, we add the ***trame*** pipeline widget using the `pipeline_widget` function. Then, we use a `VDivider` to separate the ***trame*** widget from the pipeline cards. Finally, we add the pipeline cards using the `mesh_card` and `contour_card` functions.
```python
with layout.drawer as drawer:
# drawer components
drawer.width = 325
pipeline_widget()
vuetify.VDivider(classes="mb-2")
mesh_card()
contour_card()
```
<a id="pipeline_widget-id"></a>
#### Pipeline Widget
{ width=50% }
The ***trame*** widgets are easy to use. Here, we simply create the widget, define the pipelines and their relationships, and define references to the pipeline widgets two callback functions.
```python
def pipeline_widget():
widgets.GitTree(
sources=(
"pipeline",
[
{"id": "1", "parent": "0", "visible": 1, "name": "Mesh"},
{"id": "2", "parent": "1", "visible": 1, "name": "Contour"},
],
),
actives_change=(actives_change, "[$event]"),
visibility_change=(visibility_change, "[$event]"),
)
```
<div class="print-break"></div>
<a id="default_ui_card-id"></a>
#### Default `ui_card`
{ width=50% }
The default GUI card is a simple card with a title, and a body. The card itself is shown (`v_show`) if the `ui_name` is the same as `active_ui`. We use the `VCard` to create the card, and the `VCardTitle` to create the card title, and the `VCardText` to create the space to add individual pipeline GUI components. The stylings for the card colors can be found at [Material Design](https://materializecss.com/color.html).
```python
def ui_card(title, ui_name):
with vuetify.VCard(v_show=f"active_ui == '{ui_name}'"):
vuetify.VCardTitle(
title,
classes="grey lighten-1 py-1 grey--text text--darken-3",
style="user-select: none; cursor: pointer",
hide_details=True,
dense=True,
)
content = vuetify.VCardText(classes="py-2")
return content
```
<a id="mesh_card-id"></a>
#### `mesh_card`
{ width=50% }
The `mesh_card` contains strictly default GUI components of a pipeline. First, a dropdown menu for the visual [representation](#gui_representation-id) type. Next, a row with two columns. One contains a dropdown menu for the array/field to [color by](#gui_color_by-id), and the other a dropdown menu for which [color map](#gui_color_map-id) to use. Finally, a slider to control the [opacity](#gui_opacity-id).
```python
def mesh_card():
with ui_card(title="Mesh", ui_name="mesh"):
vuetify.VSelect(
# Representation
)
with vuetify.VRow(classes="pt-2", dense=True):
with vuetify.VCol(cols="6"):
vuetify.VSelect(
# Color By
)
with vuetify.VCol(cols="6"):
vuetify.VSelect(
# Color Map
)
vuetify.VSlider(
# Opacity
)
```
Since these are default pipeline elements, we will cover these items together with the contour_card individual components [below](#default_components-id).
<div class="print-break"></div>
<a id="contour_card-id"></a>
#### `contour_card`
{ width=50% }
The `contour_card` contains a dropdown menu to select the array/field to [contour by](#contour-by-gui), a slider to control the [contour value](#contour-value-gui), and the default GUI components of a pipeline.
```python
def contour_card():
with ui_card(title="Contour", ui_name="contour"):
vuetify.VSelect(
# Contour By
)
vuetify.VSlider(
# Contour Value
)
* vuetify.VSelect(
* # Representation
* )
* with vuetify.VRow(classes="pt-2", dense=True):
* with vuetify.VCol(cols="6"):
* vuetify.VSelect(
* # Color By
* )
* with vuetify.VCol(cols="6"):
* vuetify.VSelect(
* # Color Map
* )
* vuetify.VSlider(
* # Opacity
* )
```
For simplicity, we will cover these items the contour individual components [below](#contour_components-id).
**Note**: `*` denotes essentially duplicate code\components from the `mesh_card`.
<a id="default_components-id"></a>
#### Default Components
The default components of a pipeline include the [representation](#gui_representation-id) selection, the [color by](#gui_color_by-id) selection, the [color map](#gui_color_map-id) selection, and the [opacity](#gui_opacity-id) slider.
<div class="print-break"></div>
<a id="gui_representation-id"></a>
##### Representation GUI
First, we create a constant class `Representation` to enumerate the different representations.
```python
class Representation:
Points = 0
Wireframe = 1
Surface = 2
SurfaceWithEdges = 3
```
{ width=50% }
Second, we create a dropdown menu for the representation type. The `VSelect` component is used to create a dropdown menu. The `v_model` uses the state variable `mesh_representation` initialized to be a surface. The `items` is a list of tuples, where the first element is the display string (`text`) of the representation, and the second element is the value of the representation used for selection.
```python
vuetify.VSelect(
# Representation
v_model=("mesh_representation", Representation.Surface),
items=(
"representations",
[
{"text": "Points", "value": 0},
{"text": "Wireframe", "value": 1},
{"text": "Surface", "value": 2},
{"text": "SurfaceWithEdges", "value": 3},
],
),
label="Representation",
hide_details=True,
dense=True,
outlined=True,
classes="pt-1",
)
```
The [`update_mesh_representation`](#drawer_callbacks_update_mesh_representation-id) callback is used to update the representation of the mesh.
The dropdown menu for the representation type for the contour pipeline is similar to the mesh pipeline, but replace the `v_model` line with the `v_model` line for the contour pipeline.
```python
vuetify.VSelect(
# Representation
v_model=("contour_representation", Representation.Surface),
# ... same as mesh ...
```
The [`update_contour_representation`](#drawer_callbacks_update_contour_representation-id) callback is used to update the representation of the contour.
<div class="print-break"></div>
<a id="gui_color_by-id"></a>
##### Color By GUI
{ width=25% }
We create a dropdown menu for the color by. The `VSelect` component is used to create the dropdown menu. The `v_model` uses the state variable `mesh_color_array_idx` initialized to be the default_array, 0. The `items` is a list of tuples, where the first element is the display string (`text`) of the array name, and the second element is the value of the array used for selection. For `items`, we use the state variable `array_list` to create the list of arrays initialized by our `dataset_arrays` array of dictionaries we created at read time.
```python
vuetify.VSelect(
# Color By
label="Color by",
v_model=("mesh_color_array_idx", 0),
items=("array_list", dataset_arrays),
hide_details=True,
dense=True,
outlined=True,
classes="pt-1",
)
```
The [`update_mesh_color_by_name`](#drawer_callbacks_update_mesh_color_by_name-id) callback is used to update the color by array of the mesh.
The dropdown menu for the color by of the contour pipeline is similar to the mesh pipeline, but replace the `v_model` line with the `v_model` line for the contour pipeline.
```python
vuetify.VSelect(
# Color By
v_model=("contour_color_array_idx", 0),
# ... same as mesh ...
```
The [`update_contour_representation`](#drawer_callbacks_update_contour_color_by_name-id) callback is used to update the color by array of the contour.
<div class="print-break"></div>
<a id="gui_color_map-id"></a>
##### Color Map GUI
First, we create a constant class `LookupTable` to enumerate the different color maps.
```python
class LookupTable:
Rainbow = 0
Inverted_Rainbow = 1
Greyscale = 2
Inverted_Greyscale = 3
```
{ width=25% }
Second, we create a dropdown menu for the color map. The `VSelect` component is used to create a dropdown menu. The `v_model` uses the state variable `mesh_color_preset` initialized to be the rainbow color map. The `items` is a list of tuples, where the first element is the display string (`text`) of the color map, and the second element is the value of the color map used for selection.
```python
vuetify.VSelect(
# Color Map
label="Colormap",
v_model=("mesh_color_preset", LookupTable.Rainbow),
items=(
"colormaps",
[
{"text": "Rainbow", "value": 0},
{"text": "Inv Rainbow", "value": 1},
{"text": "Greyscale", "value": 2},
{"text": "Inv Greyscale", "value": 3},
],
),
hide_details=True,
dense=True,
outlined=True,
classes="pt-1",
)
```
The [`update_mesh_color_preset`](#drawer_callbacks_update_mesh_color_preset-id) callback is used to update the color map of the mesh.
The dropdown menu for the color map of the contour pipeline is similar to the mesh pipeline, but replace the `v_model` line with the `v_model` line for the contour pipeline.
```python
vuetify.VSelect(
# Color Map
v_model=("contour_color_preset", LookupTable.Rainbow),
# ... same as mesh ...
```
The [`update_contour_color_preset`](#drawer_callbacks_update_contour_color_preset-id) callback is used to update the color map of the contour.
<div class="print-break"></div>
<a id="gui_opacity-id"></a>
##### Opacity GUI
{ width=50% }
We create a slider for the opacity. The `VSlider` component is used to create the slider. The `v_model` uses the state variable `mesh_opacity` initialized to 1.0. The `min` is set to 0 and the `max` is set to 1. The `step` is set to 0.1.
```python
vuetify.VSlider(
# Opacity
v_model=("mesh_opacity", 1.0),
min=0,
max=1,
step=0.1,
label="Opacity",
classes="mt-1",
hide_details=True,
dense=True,
)
```
The [`update_mesh_opacity`](#drawer_callbacks_update_mesh_opacity-id) callback is used to update the color map of the mesh.
The slider for the opacity of the contour pipeline is similar to the mesh pipeline, but replace the `v_model` line with the `v_model` line for the contour pipeline.
```python
vuetify.VSlider(
# Opacity
v_model=("contour_opacity", 1.0),
# ... same as mesh ...
```
The [`update_contour_opacity`](#drawer_callbacks_update_contour_opacity-id) callback is used to update the opacity of the contour.
<a id="contour_components-id"></a>
#### Contour Components
<a id="gui_contour_by-id"></a>
##### Contour By GUI
{ width=50% }
We create a dropdown menu for the contour by. The `VSelect` component is used to create the dropdown menu. The `v_model` uses the state variable `contour_by_array_idx` initialized to be the default_array, 0. The `items` is a list of tuples, where the first element is the display string (`text`) of the array name, and the second element is the value of the array used for selection. For `items`, we use the state variable `array_list` to create the list of arrays initialized by our `dataset_arrays` array of dictionaries we created at read time.
```python
vuetify.VSelect(
# Contour By
label="Contour by",
v_model=("contour_by_array_idx", 0),
items=("array_list", dataset_arrays),
hide_details=True,
dense=True,
outlined=True,
classes="pt-1",
)
```
The [`update_contour_by`](#drawer_callbacks_update_contour_by-id) callback is used to update the contour by array of the contour.
<a id="gui_contour_value-id"></a>
##### Contour Value GUI
We create a slider for the contour value. The `VSlider` component is used to create the slider. The `v_model` uses the state variable `contour_value` initialized to mid-point of the selected contour by array. The `min` is set to minimum of the contour by array and the `max` is set to maximum of the contour by array. The `step` is set to 0.01 times the range of the contour by array.
{ width=50% }
```python
vuetify.VSlider(
# Contour Value
v_model=("contour_value", contour_value),
min=("contour_min", default_min),
max=("contour_max", default_max),
step=("contour_step", 0.01 * (default_max - default_min)),
label="Value",
classes="my-1",
hide_details=True,
dense=True,
)
```
The [`update_contour_value`](#drawer_callbacks_update_contour_value-id) callback is used to update the value of the contour.
<a id="callbacks-id"></a>
## Callbacks
<a id="toolbar_callbacks-id"></a>
### Toolbar Callbacks
The first toolbar callback is the `cube_axes_visibility` callback, which is used to turn on and off the cube axes. The `update_cube_axes_visibility` function is found by the @state.change decorator for `cube_axes_visibility`. Then we simply set the `cube_axes` actor's `Visibility` property to the value of `cube_axes_visibility`, and update the view.
<a id="toolbar_callbacks_cube_axes_visibility-id"></a>
```python
@state.change("cube_axes_visibility")
def update_cube_axes_visibility(cube_axes_visibility, **kwargs):
cube_axes.SetVisibility(cube_axes_visibility)
ctrl.view_update()
```
<div class="print-break"></div>
<a id="drawer_callbacks-id"></a>
### Drawer Callbacks
1. [Pipeline Widget Callbacks](#drawer_pipeline_widget_callbacks-id)
2. [Representation Callbacks](#representation_callbacks-id)
3. [Color By Callbacks](#color_by_callbacks-id)
4. [Color Map Callbacks](#colormap_callbacks-id)
5. [Opacity Callbacks](#opacity_callbacks-id)
6. [Contour Components Callbacks](#contour_components-id)
<a id="drawer_pipeline_widget_callbacks-id"></a>
#### Pipeline Widget Callbacks
When a pipeline is selected in the pipeline widget, we want to update the pipeline card to show in the drawer. Using the default `actives_change` function of ***trame*** pipeline widget, we simply update the `state` element `active_ui` to display the pipeline card of the selected pipeline.
<a id="drawer_callbacks_actives_change-id"></a>
```python
# Selection Change
def actives_change(ids):
_id = ids[0]
if _id == "1": # Mesh
state.active_ui = "mesh"
elif _id == "2": # Contour
state.active_ui = "contour"
else:
state.active_ui = "nothing"
```
When a pipeline visibility is toggled in the pipeline widget, we want to update the view to add or remove the toggled pipeline. Using the default `visibility_change` function of ***trame*** pipeline widget, we update the visibility of the appropriate pipeline `actor` using `actor.SetVisibility` function with the visibility accessed from the `event["visible"]` dictionary element.
<a id="drawer_callbacks_visibility_change-id"></a>
```python
# Visibility Change
def visibility_change(event):
_id = event["id"]
_visibility = event["visible"]
if _id == "1": # Mesh
mesh_actor.SetVisibility(_visibility)
elif _id == "2": # Contour
contour_actor.SetVisibility(_visibility)
ctrl.view_update()
```
<a id="representation_callbacks-id"></a>
#### Representation Callbacks
The `update_representation` function updates the `representation` property of an `actor` to the value of `mode`.
<a id="drawer_callbacks_update_representation-id"></a>
<div class="print-break"></div>
```python
# Representation Callbacks
def update_representation(actor, mode):
property = actor.GetProperty()
if mode == Representation.Points:
property.SetRepresentationToPoints()
property.SetPointSize(5)
property.EdgeVisibilityOff()
elif mode == Representation.Wireframe:
property.SetRepresentationToWireframe()
property.SetPointSize(1)
property.EdgeVisibilityOff()
elif mode == Representation.Surface:
property.SetRepresentationToSurface()
property.SetPointSize(1)
property.EdgeVisibilityOff()
elif mode == Representation.SurfaceWithEdges:
property.SetRepresentationToSurface()
property.SetPointSize(1)
property.EdgeVisibilityOn()
```
The `update_mesh_representation` function is found by the @state.change decorator for `mesh_representation`. We simply call the `update_representation` function with the `mesh_actor` and the `mesh_representation` state, and then update the view.
<a id="drawer_callbacks_update_mesh_representation-id"></a>
```python
@state.change("mesh_representation")
def update_mesh_representation(mesh_representation, **kwargs):
update_representation(mesh_actor, mesh_representation)
ctrl.view_update()
```
Likewise, the `update_contour_representation` function is found by the @state.change decorator for `contour_representation`. We simply call the `update_representation` function with the `mesh_actor` and the `contour_representation` state, and then update the view.
<a id="drawer_callbacks_update_contour_representation-id"></a>
```python
@state.change("contour_representation")
def update_contour_representation(contour_representation, **kwargs):
update_representation(contour_actor, contour_representation)
ctrl.view_update()
```
<a id="color_by_callbacks-id"></a>
<div class="print-break"></div>
#### Color By Callbacks
The `color_by_array` function updates the `SelectColorArray` of the `mapper` of an `actor` to the value of `array`. These operations are the same as the ones we used setting up the initial pipeline, so we will not go through the individual commands again here.
<a id="drawer_callbacks_color_by_array-id"></a>
```python
# Color By Callbacks
def color_by_array(actor, array):
_min, _max = array.get("range")
mapper = actor.GetMapper()
mapper.SelectColorArray(array.get("text"))
mapper.GetLookupTable().SetRange(_min, _max)
if array.get("type") == vtkDataObject.FIELD_ASSOCIATION_POINTS:
mesh_mapper.SetScalarModeToUsePointFieldData()
else:
mesh_mapper.SetScalarModeToUseCellFieldData()
mapper.SetScalarVisibility(True)
mapper.SetUseLookupTableScalarRange(True)
```
The `update_mesh_color_by_name` function is found by the @state.change decorator for `mesh_color_array_idx`. We simply call the `color_by_array` function with the `mesh_actor` and the `array`, and then update the view. The `array` is set using the `mesh_color_array_idx` state on the `dataset_arrays` array of dictionaries.
<a id="drawer_callbacks_update_mesh_representation-id"></a>
```python
@state.change("mesh_color_array_idx")
def update_mesh_color_by_name(mesh_color_array_idx, **kwargs):
array = dataset_arrays[mesh_color_array_idx]
color_by_array(mesh_actor, array)
ctrl.view_update()
```
Likewise, the `update_contour_color_by_name` function is found by the @state.change decorator for `contour_color_array_idx`. We simply call the `color_by_array` function with the `contour_actor` and the `array`, and then update the view. The `array` is set using the `contour_color_array_idx` state on the `dataset_arrays` array of dictionaries.
<a id="drawer_callbacks_update_contour_color_by_name-id"></a>
```python
@state.change("contour_color_array_idx")
def update_contour_color_by_name(contour_color_array_idx, **kwargs):
array = dataset_arrays[contour_color_array_idx]
color_by_array(contour_actor, array)
ctrl.view_update()
```
<a id="colormap_callbacks-id"></a>
#### Color Map Callbacks
The `use_preset` function updates the `lut`, lookup table, hue, saturation, and value range for the `preset`. We need the `actor` to get the `lut`, and the `preset` to determine the `hue`, `saturation`, and `value_range`.
<a id="drawer_callbacks_use_preset-id"></a>
```python
# Color Map Callbacks
def use_preset(actor, preset):
lut = actor.GetMapper().GetLookupTable()
if preset == LookupTable.Rainbow:
lut.SetHueRange(0.666, 0.0)
lut.SetSaturationRange(1.0, 1.0)
lut.SetValueRange(1.0, 1.0)
elif preset == LookupTable.Inverted_Rainbow:
lut.SetHueRange(0.0, 0.666)
lut.SetSaturationRange(1.0, 1.0)
lut.SetValueRange(1.0, 1.0)
elif preset == LookupTable.Greyscale:
lut.SetHueRange(0.0, 0.0)
lut.SetSaturationRange(0.0, 0.0)
lut.SetValueRange(0.0, 1.0)
elif preset == LookupTable.Inverted_Greyscale:
lut.SetHueRange(0.0, 0.666)
lut.SetSaturationRange(0.0, 0.0)
lut.SetValueRange(1.0, 0.0)
lut.Build()
```
The `update_mesh_color_preset` function is found by the @state.change decorator for `mesh_color_preset`. We simply call the `use_preset` function with the `mesh_actor` and the `mesh_color_preset` state, and then update the view.
<a id="drawer_callbacks_update_mesh_color_preset-id"></a>
```python
@state.change("mesh_color_preset")
def update_mesh_color_preset(mesh_color_preset, **kwargs):
use_preset(mesh_actor, mesh_color_preset)
ctrl.view_update()
```
The `update_contour_color_preset` function is found by the @state.change decorator for `contour_color_preset`. We simply call the `use_preset` function with the `contour_actor` and the `contour_color_preset` state, and then update the view.
<a id="drawer_callbacks_update_contour_color_preset-id"></a>
```python
@state.change("contour_color_preset")
def update_contour_color_preset(contour_color_preset, **kwargs):
use_preset(contour_actor, contour_color_preset)
ctrl.view_update()
```
<a id="opacity_callbacks-id"></a>
#### Opacity Callbacks
The `update_mesh_opacity` function is found by the @state.change decorator for `mesh_opacity`. We simply use a `mesh_actor` property and the `mesh_opacity` state to `SetOpacity`, and then update the view.
<a id="drawer_callbacks_update_mesh_opacity-id"></a>
```python
# Opacity Callbacks
@state.change("mesh_opacity")
def update_mesh_opacity(mesh_opacity, **kwargs):
mesh_actor.GetProperty().SetOpacity(mesh_opacity)
ctrl.view_update()
```
The `update_contour_opacity` function is found by the @state.change decorator for `contour_opacity`. We simply use a `contour_actor` property and the `contour_opacity` state to `SetOpacity`, and then update the view.
<a id="drawer_callbacks_update_contour_opacity-id"></a>
```python
@state.change("contour_opacity")
def update_contour_opacity(contour_opacity, **kwargs):
contour_actor.GetProperty().SetOpacity(contour_opacity)
ctrl.view_update()
```
<a id="contour_callbacks-id"></a>
#### Contour Callbacks
The `update_contour_by` function updates the `SetInputArrayToProcess` of the `contour` filter to the value of `array`. These operations are the same as the ones we used setting up the initial pipeline, so we will not go through the individual commands again here.
<a id="drawer_callbacks_update_contour_by-id"></a>
```python
# Contour Callbacks
@state.change("contour_by_array_idx")
def update_contour_by(contour_by_array_idx, **kwargs):
array = dataset_arrays[contour_by_array_idx]
contour_min, contour_max = array.get("range")
contour_step = 0.01 * (contour_max - contour_min)
contour_value = 0.5 * (contour_max + contour_min)
contour.SetInputArrayToProcess(0, 0, 0, array.get("type"), array.get("text"))
contour.SetValue(0, contour_value)
# Update UI
state.contour_min = contour_min
state.contour_max = contour_max
state.contour_value = contour_value
state.contour_step = contour_step
# Update View
ctrl.view_update()
```
the `update_contour_by` function is found by the @state.change decorator for `contour_by_array_idx`. We simply use the `contour` filter and the `array`, and then update the view. The `array` is set using the `contour_by_array_idx` state on the `dataset_arrays` array of dictionaries.
The `update_contour_value` function is found by the @state.change decorator for `contour_value`. We simply use a `contour` filter property and the `contour_value` state to `SetValue`, and then update the view.
<a id="drawer_callbacks_update_contour_value-id"></a>
```python
@state.change("contour_value")
def update_contour_value(contour_value, **kwargs):
contour.SetValue(0, float(contour_value))
ctrl.view_update()
```
<a id="start-id"></a>
## Start
There is no change to the `start` function.
```python
if __name__ == "__main__":
server.start()
```
## Running the Application
```bash
python ./04_application/app.py --port 1234
# or
python ./04_application/solution.py --port 1234
```
Your browser should open automatically to `http://localhost:1234/`
|