1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
r"""
Version for trame 1.x - https://github.com/Kitware/trame/blob/release-v1/examples/PlainPython/GeoMaps/UberPickupsNYC/app.py
Delta v1..v2 - https://github.com/Kitware/trame/commit/6f0882ab9060b0f1953915c2a7e93dbe996479e0
An example of showing geographic data
Installation requirements:
pip install trame trame-vuetify trame-vtk trame-deckgl trame-vega
"""
import os
import altair as alt
import numpy as np
import pandas as pd
import pydeck as pdk
from trame.app import get_server
from trame.ui.vuetify import SinglePageLayout
from trame.widgets import deckgl, html, vega, vuetify
# -----------------------------------------------------------------------------
# Trame setup
# -----------------------------------------------------------------------------
server = get_server(client_type="vue2")
state, ctrl = server.state, server.controller
# -----------------------------------------------------------------------------
# LOADING DATA
# -----------------------------------------------------------------------------
DATE_TIME = "date/time"
DATA_URL = (
"http://s3-us-west-2.amazonaws.com/streamlit-demo-data/uber-raw-data-sep14.csv.gz"
)
def lowercase(x):
return str(x).lower()
def load_data(nrows):
data = pd.read_csv(DATA_URL, nrows=nrows)
data.rename(lowercase, axis="columns", inplace=True)
data[DATE_TIME] = pd.to_datetime(data[DATE_TIME])
return data
data = load_data(100000)
# CREATING FUNCTION FOR MAPS
map_list = [
{
"id": "nyc",
"title": "All New York City",
"lat": np.average(data["lat"]),
"lon": np.average(data["lon"]),
"zoom": 11,
},
{
"id": "lga",
"title": "La Guardia Airport",
"lat": 40.7900,
"lon": -73.8700,
"zoom": 12,
},
{
"id": "jfk",
"title": "JFK Airport",
"lat": 40.6650,
"lon": -73.7821,
"zoom": 11,
},
{
"id": "nwk",
"title": "Newark Airport",
"lat": 40.7090,
"lon": -74.1805,
"zoom": 11,
},
]
def updateMap(data, id, lat, lon, zoom, **kwarg):
deck = pdk.Deck(
map_provider="mapbox",
map_style="mapbox://styles/mapbox/light-v9",
initial_view_state={
"latitude": lat,
"longitude": lon,
"zoom": zoom,
"pitch": 50,
},
layers=[
pdk.Layer(
"HexagonLayer",
data=data,
get_position=["lon", "lat"],
radius=100,
elevation_scale=4,
elevation_range=[0, 1000],
pickable=True,
extruded=True,
),
],
)
ctrl[f"{id}_update"](deck)
state[f"{id}Title"] = kwarg["title"]
@state.change("pickupHour")
def updateData(pickupHour, **kwargs):
state.chartTitle = f"All New York City from {pickupHour}:00 and {pickupHour + 1}:00"
# FILTERING DATA BY HOUR SELECTED
filtered_data = data[data[DATE_TIME].dt.hour == pickupHour]
for item in map_list:
updateMap(filtered_data, **item)
# FILTERING DATA FOR THE HISTOGRAM
filtered = filtered_data[
(data[DATE_TIME].dt.hour >= pickupHour)
& (data[DATE_TIME].dt.hour < (pickupHour + 1))
]
hist = np.histogram(filtered[DATE_TIME].dt.minute, bins=60, range=(0, 60))[0]
chart_data = pd.DataFrame({"minute": range(60), "pickups": hist})
# LAYING OUT THE HISTOGRAM SECTION
ctrl.hour_breakdown_update(
alt.Chart(chart_data)
.mark_area(
interpolate="step-after",
)
.properties(width="container", height=150)
.encode(
x=alt.X("minute:Q", scale=alt.Scale(nice=False)),
y=alt.Y("pickups:Q"),
tooltip=["minute", "pickups"],
)
.configure_mark(opacity=0.5, color="red")
)
# -----------------------------------------------------------------------------
# GUI Layout
# -----------------------------------------------------------------------------
dynamicTitle = "{{nycTitle}} from {{pickupHour}}:00 and {{pickupHour + 1}}:00"
mapProps = {
"classes": "elevation-5",
"mapboxApiKey": os.environ["MAPBOX_API_KEY"],
"style": "height: 50vh;",
}
with SinglePageLayout(server) as layout:
layout.title.set_text("NYC Uber Ridesharing Data")
with layout.content:
with vuetify.VContainer(fluid="true") as container:
html.Div(
"""Examining how Uber pickups vary over time in New York City's
and at its major regional airports.
By sliding the slider on the left you can view different slices
of time and explore different transportation trends.""",
classes="text-body-1",
)
vuetify.VSlider(
v_model=("pickupHour", 0),
classes="mt-4",
label="Select hour of pickup",
min=0,
max=23,
thumb_label=True,
)
with vuetify.VRow():
with vuetify.VCol(cols=4):
html.Div(dynamicTitle, classes="text-h5")
ctrl.nyc_update = deckgl.Deck(**mapProps).update
with vuetify.VCol(cols=8) as col:
with vuetify.VRow():
for title, name in [
("{{jfkTitle}}", "jfk"),
("{{lgaTitle}}", "lga"),
("{{nwkTitle}}", "nwk"),
]:
with vuetify.VCol(cols=4):
html.Div(title, classes="text-h5")
ctrl[f"{name}_update"] = deckgl.Deck(**mapProps).update
with html.Div(classes="text-center mt-6"):
ctrl.hour_breakdown_update = vega.Figure(style="width: 100%").update
# -----------------------------------------------------------------------------
# Start server
# -----------------------------------------------------------------------------
if __name__ == "__main__":
server.start()
|