1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
|
# <a name="transitions-module"></a> transitions
[](https://github.com/pytransitions/transitions)
[](https://github.com/pytransitions/transitions/actions?query=workflow%3Apytest)
[](https://coveralls.io/github/pytransitions/transitions?branch=master)
[](https://pypi.org/project/transitions)
[](https://copr.fedorainfracloud.org/coprs/aleneum/python-transitions/)
[](https://github.com/pytransitions/transitions/compare/0.9.1...master)
[](LICENSE)
[](https://mybinder.org/v2/gh/pytransitions/transitions/master?filepath=examples%2FPlayground.ipynb)
<!-- [](https://github.com/pytransitions/transitions) -->
<!--[](Link)-->
A lightweight, object-oriented state machine implementation in Python with many extensions. Compatible with Python 2.7+ and 3.0+.
## Installation
pip install transitions
... or clone the repo from GitHub and then:
python setup.py install
## Table of Contents
- [Quickstart](#quickstart)
- [Non-Quickstart](#the-non-quickstart)
- [Some key concepts](#some-key-concepts)
- [Basic initialization](#basic-initialization)
- [States](#states)
- [Callbacks](#state-callbacks)
- [Checking state](#checking-state)
- [Enumerations](#enum-state)
- [Transitions](#transitions)
- [Triggering a transition](#triggers)
- [Automatic transitions](#automatic-transitions-for-all-states)
- [Transitioning from multiple states](#transitioning-from-multiple-states)
- [Reflexive transitions from multiple states](#reflexive-from-multiple-states)
- [Internal transitions](#internal-transitions)
- [Ordered transitions](#ordered-transitions)
- [Queued transitions](#queued-transitions)
- [Conditional transitions](#conditional-transitions)
- [Check transitions](#check-transitions)
- [Callbacks](#transition-callbacks)
- [Callable resolution](#resolution)
- [Callback execution order](#execution-order)
- [Passing data](#passing-data)
- [Alternative initialization patterns](#alternative-initialization-patterns)
- [Logging](#logging)
- [(Re-)Storing machine instances](#restoring)
- [Typing support](#typing-support)
- [Extensions](#extensions)
- [Hierarchical State Machine](#hsm)
- [Diagrams](#diagrams)
- [Threading](#threading)
- [Async](#async)
- [State features](#state-features)
- [Django](#django-support)
- [Bug reports etc.](#bug-reports)
## Quickstart
They say [a good example is worth](https://www.google.com/webhp?ie=UTF-8#q=%22a+good+example+is+worth%22&start=20) 100 pages of API documentation, a million directives, or a thousand words.
Well, "they" probably lie... but here's an example anyway:
```python
from transitions import Machine
import random
class NarcolepticSuperhero(object):
# Define some states. Most of the time, narcoleptic superheroes are just like
# everyone else. Except for...
states = ['asleep', 'hanging out', 'hungry', 'sweaty', 'saving the world']
def __init__(self, name):
# No anonymous superheroes on my watch! Every narcoleptic superhero gets
# a name. Any name at all. SleepyMan. SlumberGirl. You get the idea.
self.name = name
# What have we accomplished today?
self.kittens_rescued = 0
# Initialize the state machine
self.machine = Machine(model=self, states=NarcolepticSuperhero.states, initial='asleep')
# Add some transitions. We could also define these using a static list of
# dictionaries, as we did with states above, and then pass the list to
# the Machine initializer as the transitions= argument.
# At some point, every superhero must rise and shine.
self.machine.add_transition(trigger='wake_up', source='asleep', dest='hanging out')
# Superheroes need to keep in shape.
self.machine.add_transition('work_out', 'hanging out', 'hungry')
# Those calories won't replenish themselves!
self.machine.add_transition('eat', 'hungry', 'hanging out')
# Superheroes are always on call. ALWAYS. But they're not always
# dressed in work-appropriate clothing.
self.machine.add_transition('distress_call', '*', 'saving the world',
before='change_into_super_secret_costume')
# When they get off work, they're all sweaty and disgusting. But before
# they do anything else, they have to meticulously log their latest
# escapades. Because the legal department says so.
self.machine.add_transition('complete_mission', 'saving the world', 'sweaty',
after='update_journal')
# Sweat is a disorder that can be remedied with water.
# Unless you've had a particularly long day, in which case... bed time!
self.machine.add_transition('clean_up', 'sweaty', 'asleep', conditions=['is_exhausted'])
self.machine.add_transition('clean_up', 'sweaty', 'hanging out')
# Our NarcolepticSuperhero can fall asleep at pretty much any time.
self.machine.add_transition('nap', '*', 'asleep')
def update_journal(self):
""" Dear Diary, today I saved Mr. Whiskers. Again. """
self.kittens_rescued += 1
@property
def is_exhausted(self):
""" Basically a coin toss. """
return random.random() < 0.5
def change_into_super_secret_costume(self):
print("Beauty, eh?")
```
There, now you've baked a state machine into `NarcolepticSuperhero`. Let's take him/her/it out for a spin...
```python
>>> batman = NarcolepticSuperhero("Batman")
>>> batman.state
'asleep'
>>> batman.wake_up()
>>> batman.state
'hanging out'
>>> batman.nap()
>>> batman.state
'asleep'
>>> batman.clean_up()
MachineError: "Can't trigger event clean_up from state asleep!"
>>> batman.wake_up()
>>> batman.work_out()
>>> batman.state
'hungry'
# Batman still hasn't done anything useful...
>>> batman.kittens_rescued
0
# We now take you live to the scene of a horrific kitten entreement...
>>> batman.distress_call()
'Beauty, eh?'
>>> batman.state
'saving the world'
# Back to the crib.
>>> batman.complete_mission()
>>> batman.state
'sweaty'
>>> batman.clean_up()
>>> batman.state
'asleep' # Too tired to shower!
# Another productive day, Alfred.
>>> batman.kittens_rescued
1
```
While we cannot read the mind of the actual batman, we surely can visualize the current state of our `NarcolepticSuperhero`.

Have a look at the [Diagrams](#diagrams) extensions if you want to know how.
## The non-quickstart
A state machine is a _model_ of behavior composed of a finite number of _states_ and _transitions_ between those states. Within each state and transition some _action_ can be performed. A state machine needs to start at some _initial state_. When using `transitions`, a state machine may consist of multiple objects where some (_machines_) contain definitions for the manipulation of other (_models_). Below, we will look at some core concepts and how to work with them.
### Some key concepts
- **State**. A state represents a particular condition or stage in the state machine. It's a distinct mode of behavior or phase in a process.
- **Transition**. This is the process or event that causes the state machine to change from one state to another.
- **Model**. The actual stateful structure. It's the entity that gets updated during transitions. It may also define _actions_ that will be executed during transitions. For instance, right before a transition or when a state is entered or exited.
- **Machine**. This is the entity that manages and controls the model, states, transitions, and actions. It's the conductor that orchestrates the entire process of the state machine.
- **Trigger**. This is the event that initiates a transition, the method that sends the signal to start a transition.
- **Action**. Specific operation or task that is performed when a certain state is entered, exited, or during a transition. The action is implemented through _callbacks_, which are functions that get executed when some event happens.
### Basic initialization
Getting a state machine up and running is pretty simple. Let's say you have the object `lump` (an instance of class `Matter`), and you want to manage its states:
```python
class Matter(object):
pass
lump = Matter()
```
You can initialize a (_minimal_) working state machine bound to the model `lump` like this:
```python
from transitions import Machine
machine = Machine(model=lump, states=['solid', 'liquid', 'gas', 'plasma'], initial='solid')
# Lump now has a new state attribute!
lump.state
>>> 'solid'
```
An alternative is to not explicitly pass a model to the `Machine` initializer:
```python
machine = Machine(states=['solid', 'liquid', 'gas', 'plasma'], initial='solid')
# The machine instance itself now acts as a model
machine.state
>>> 'solid'
```
Note that this time I did not pass the `lump` model as an argument. The first argument passed to `Machine` acts as a model. So when I pass something there, all the convenience functions will be added to the object. If no model is provided then the `machine` instance itself acts as a model.
When at the beginning I said "minimal", it was because while this state machine is technically operational, it doesn't actually _do_ anything. It starts in the `'solid'` state, but won't ever move into another state, because no transitions are defined... yet!
Let's try again.
```python
# The states
states=['solid', 'liquid', 'gas', 'plasma']
# And some transitions between states. We're lazy, so we'll leave out
# the inverse phase transitions (freezing, condensation, etc.).
transitions = [
{ 'trigger': 'melt', 'source': 'solid', 'dest': 'liquid' },
{ 'trigger': 'evaporate', 'source': 'liquid', 'dest': 'gas' },
{ 'trigger': 'sublimate', 'source': 'solid', 'dest': 'gas' },
{ 'trigger': 'ionize', 'source': 'gas', 'dest': 'plasma' }
]
# Initialize
machine = Machine(lump, states=states, transitions=transitions, initial='liquid')
# Now lump maintains state...
lump.state
>>> 'liquid'
# And that state can change...
# Either calling the shiny new trigger methods
lump.evaporate()
lump.state
>>> 'gas'
# Or by calling the trigger method directly
lump.trigger('ionize')
lump.state
>>> 'plasma'
```
Notice the shiny new methods attached to the `Matter` instance (`evaporate()`, `ionize()`, etc.).
Each method triggers the corresponding transition.
Transitions can also be triggered _dynamically_ by calling the `trigger()` method provided with the name of the transition, as shown above.
More on this in the [Triggering a transition](#triggers) section.
### <a name="states"></a>States
The soul of any good state machine (and of many bad ones, no doubt) is a set of states. Above, we defined the valid model states by passing a list of strings to the `Machine` initializer. But internally, states are actually represented as `State` objects.
You can initialize and modify States in a number of ways. Specifically, you can:
- pass a string to the `Machine` initializer giving the name(s) of the state(s), or
- directly initialize each new `State` object, or
- pass a dictionary with initialization arguments
The following snippets illustrate several ways to achieve the same goal:
```python
# import Machine and State class
from transitions import Machine, State
# Create a list of 3 states to pass to the Machine
# initializer. We can mix types; in this case, we
# pass one State, one string, and one dict.
states = [
State(name='solid'),
'liquid',
{ 'name': 'gas'}
]
machine = Machine(lump, states)
# This alternative example illustrates more explicit
# addition of states and state callbacks, but the net
# result is identical to the above.
machine = Machine(lump)
solid = State('solid')
liquid = State('liquid')
gas = State('gas')
machine.add_states([solid, liquid, gas])
```
States are initialized _once_ when added to the machine and will persist until they are removed from it. In other words: if you alter the attributes of a state object, this change will NOT be reset the next time you enter that state. Have a look at how to [extend state features](#state-features) in case you require some other behaviour.
#### <a name="state-callbacks"></a>Callbacks
But just having states and being able to move around between them (transitions) isn't very useful by itself. What if you want to do something, perform some _action_ when you enter or exit a state? This is where _callbacks_ come in.
A `State` can also be associated with a list of `enter` and `exit` callbacks, which are called whenever the state machine enters or leaves that state. You can specify callbacks during initialization by passing them to a `State` object constructor, in a state property dictionary, or add them later.
For convenience, whenever a new `State` is added to a `Machine`, the methods `on_enter_«state name»` and `on_exit_«state name»` are dynamically created on the Machine (not on the model!), which allow you to dynamically add new enter and exit callbacks later if you need them.
```python
# Our old Matter class, now with a couple of new methods we
# can trigger when entering or exit states.
class Matter(object):
def say_hello(self): print("hello, new state!")
def say_goodbye(self): print("goodbye, old state!")
lump = Matter()
# Same states as above, but now we give StateA an exit callback
states = [
State(name='solid', on_exit=['say_goodbye']),
'liquid',
{ 'name': 'gas', 'on_exit': ['say_goodbye']}
]
machine = Machine(lump, states=states)
machine.add_transition('sublimate', 'solid', 'gas')
# Callbacks can also be added after initialization using
# the dynamically added on_enter_ and on_exit_ methods.
# Note that the initial call to add the callback is made
# on the Machine and not on the model.
machine.on_enter_gas('say_hello')
# Test out the callbacks...
machine.set_state('solid')
lump.sublimate()
>>> 'goodbye, old state!'
>>> 'hello, new state!'
```
Note that `on_enter_«state name»` callback will _not_ fire when a Machine is first initialized. For example if you have an `on_enter_A()` callback defined, and initialize the `Machine` with `initial='A'`, `on_enter_A()` will not be fired until the next time you enter state `A`. (If you need to make sure `on_enter_A()` fires at initialization, you can simply create a dummy initial state and then explicitly call `to_A()` inside the `__init__` method.)
In addition to passing in callbacks when initializing a `State`, or adding them dynamically, it's also possible to define callbacks in the model class itself, which may increase code clarity. For example:
```python
class Matter(object):
def say_hello(self): print("hello, new state!")
def say_goodbye(self): print("goodbye, old state!")
def on_enter_A(self): print("We've just entered state A!")
lump = Matter()
machine = Machine(lump, states=['A', 'B', 'C'])
```
Now, any time `lump` transitions to state `A`, the `on_enter_A()` method defined in the `Matter` class will fire.
You can make use of `on_final` callbacks which will be triggered when a state with `final=True` is entered.
```python
from transitions import Machine, State
states = [State(name='idling'),
State(name='rescuing_kitten'),
State(name='offender_gone', final=True),
State(name='offender_caught', final=True)]
transitions = [["called", "idling", "rescuing_kitten"], # we will come when called
{"trigger": "intervene",
"source": "rescuing_kitten",
"dest": "offender_gone", # we
"conditions": "offender_is_faster"}, # unless they are faster
["intervene", "rescuing_kitten", "offender_caught"]]
class FinalSuperhero(object):
def __init__(self, speed):
self.machine = Machine(self, states=states, transitions=transitions, initial="idling", on_final="claim_success")
self.speed = speed
def offender_is_faster(self, offender_speed):
return self.speed < offender_speed
def claim_success(self, **kwargs):
print("The kitten is safe.")
hero = FinalSuperhero(speed=10) # we are not in shape today
hero.called()
assert hero.is_rescuing_kitten()
hero.intervene(offender_speed=15)
# >>> 'The kitten is safe'
assert hero.machine.get_state(hero.state).final # it's over
assert hero.is_offender_gone() # maybe next time ...
```
#### <a name="checking-state"></a>Checking state
You can always check the current state of the model by either:
- inspecting the `.state` attribute, or
- calling `is_«state name»()`
And if you want to retrieve the actual `State` object for the current state, you can do that through the `Machine` instance's `get_state()` method.
```python
lump.state
>>> 'solid'
lump.is_gas()
>>> False
lump.is_solid()
>>> True
machine.get_state(lump.state).name
>>> 'solid'
```
If you'd like you can choose your own state attribute name by passing the `model_attribute` argument while initializing the `Machine`. This will also change the name of `is_«state name»()` to `is_«model_attribute»_«state name»()` though. Similarly, auto transitions will be named `to_«model_attribute»_«state name»()` instead of `to_«state name»()`. This is done to allow multiple machines to work on the same model with individual state attribute names.
```python
lump = Matter()
machine = Machine(lump, states=['solid', 'liquid', 'gas'], model_attribute='matter_state', initial='solid')
lump.matter_state
>>> 'solid'
# with a custom 'model_attribute', states can also be checked like this:
lump.is_matter_state_solid()
>>> True
lump.to_matter_state_gas()
>>> True
```
#### <a name="enum-state"></a>Enumerations
So far we have seen how we can give state names and use these names to work with our state machine.
If you favour stricter typing and more IDE code completion (or you just can't type 'sesquipedalophobia' any longer because the word scares you) using [Enumerations](https://docs.python.org/3/library/enum.html) might be what you are looking for:
```python
import enum # Python 2.7 users need to have 'enum34' installed
from transitions import Machine
class States(enum.Enum):
ERROR = 0
RED = 1
YELLOW = 2
GREEN = 3
transitions = [['proceed', States.RED, States.YELLOW],
['proceed', States.YELLOW, States.GREEN],
['error', '*', States.ERROR]]
m = Machine(states=States, transitions=transitions, initial=States.RED)
assert m.is_RED()
assert m.state is States.RED
state = m.get_state(States.RED) # get transitions.State object
print(state.name) # >>> RED
m.proceed()
m.proceed()
assert m.is_GREEN()
m.error()
assert m.state is States.ERROR
```
You can mix enums and strings if you like (e.g. `[States.RED, 'ORANGE', States.YELLOW, States.GREEN]`) but note that internally, `transitions` will still handle states by name (`enum.Enum.name`).
Thus, it is not possible to have the states `'GREEN'` and `States.GREEN` at the same time.
### <a name="transitions"></a>Transitions
Some of the above examples already illustrate the use of transitions in passing, but here we'll explore them in more detail.
As with states, each transition is represented internally as its own object – an instance of class `Transition`. The quickest way to initialize a set of transitions is to pass a dictionary, or list of dictionaries, to the `Machine` initializer. We already saw this above:
```python
transitions = [
{ 'trigger': 'melt', 'source': 'solid', 'dest': 'liquid' },
{ 'trigger': 'evaporate', 'source': 'liquid', 'dest': 'gas' },
{ 'trigger': 'sublimate', 'source': 'solid', 'dest': 'gas' },
{ 'trigger': 'ionize', 'source': 'gas', 'dest': 'plasma' }
]
machine = Machine(model=Matter(), states=states, transitions=transitions)
```
Defining transitions in dictionaries has the benefit of clarity, but can be cumbersome. If you're after brevity, you might choose to define transitions using lists. Just make sure that the elements in each list are in the same order as the positional arguments in the `Transition` initialization (i.e., `trigger`, `source`, `destination`, etc.).
The following list-of-lists is functionally equivalent to the list-of-dictionaries above:
```python
transitions = [
['melt', 'solid', 'liquid'],
['evaporate', 'liquid', 'gas'],
['sublimate', 'solid', 'gas'],
['ionize', 'gas', 'plasma']
]
```
Alternatively, you can add transitions to a `Machine` after initialization:
```python
machine = Machine(model=lump, states=states, initial='solid')
machine.add_transition('melt', source='solid', dest='liquid')
```
#### <a name="triggers"></a>Triggering a transition
For a transition to be executed, some event needs to _trigger_ it. There are two ways to do this:
1. Using the automatically attached method in the base model:
```python
>>> lump.melt()
>>> lump.state
'liquid'
>>> lump.evaporate()
>>> lump.state
'gas'
```
Note how you don't have to explicitly define these methods anywhere; the name of each transition is bound to the model passed to the `Machine` initializer (in this case, `lump`). This also means that your model **should not** already contain methods with the same name as event triggers since `transitions` will only attach convenience methods to your model if the spot is not already taken. If you want to modify that behaviour, have a look at the [FAQ](examples/Frequently%20asked%20questions.ipynb).
2. Using the `trigger` method, now attached to your model (if it hasn't been there before). This method lets you execute transitions by name in case dynamic triggering is required:
```python
>>> lump.trigger('melt')
>>> lump.state
'liquid'
>>> lump.trigger('evaporate')
>>> lump.state
'gas'
```
#### Triggering invalid transitions
By default, triggering an invalid transition will raise an exception:
```python
>>> lump.to_gas()
>>> # This won't work because only objects in a solid state can melt
>>> lump.melt()
transitions.core.MachineError: "Can't trigger event melt from state gas!"
```
This behavior is generally desirable, since it helps alert you to problems in your code. But in some cases, you might want to silently ignore invalid triggers. You can do this by setting `ignore_invalid_triggers=True` (either on a state-by-state basis, or globally for all states):
```python
>>> # Globally suppress invalid trigger exceptions
>>> m = Machine(lump, states, initial='solid', ignore_invalid_triggers=True)
>>> # ...or suppress for only one group of states
>>> states = ['new_state1', 'new_state2']
>>> m.add_states(states, ignore_invalid_triggers=True)
>>> # ...or even just for a single state. Here, exceptions will only be suppressed when the current state is A.
>>> states = [State('A', ignore_invalid_triggers=True), 'B', 'C']
>>> m = Machine(lump, states)
>>> # ...this can be inverted as well if just one state should raise an exception
>>> # since the machine's global value is not applied to a previously initialized state.
>>> states = ['A', 'B', State('C')] # the default value for 'ignore_invalid_triggers' is False
>>> m = Machine(lump, states, ignore_invalid_triggers=True)
```
If you need to know which transitions are valid from a certain state, you can use `get_triggers`:
```python
m.get_triggers('solid')
>>> ['melt', 'sublimate']
m.get_triggers('liquid')
>>> ['evaporate']
m.get_triggers('plasma')
>>> []
# you can also query several states at once
m.get_triggers('solid', 'liquid', 'gas', 'plasma')
>>> ['melt', 'evaporate', 'sublimate', 'ionize']
```
If you have followed this documentation from the beginning, you will notice that `get_triggers` actually returns more triggers than the explicitly defined ones shown above, such as `to_liquid` and so on.
These are called `auto-transitions` and will be introduced in the next section.
#### <a name="automatic-transitions-for-all-states"></a>Automatic transitions for all states
In addition to any transitions added explicitly, a `to_«state»()` method is created automatically whenever a state is added to a `Machine` instance. This method transitions to the target state no matter which state the machine is currently in:
```python
lump.to_liquid()
lump.state
>>> 'liquid'
lump.to_solid()
lump.state
>>> 'solid'
```
If you desire, you can disable this behavior by setting `auto_transitions=False` in the `Machine` initializer.
#### <a name="transitioning-from-multiple-states"></a>Transitioning from multiple states
A given trigger can be attached to multiple transitions, some of which can potentially begin or end in the same state. For example:
```python
machine.add_transition('transmogrify', ['solid', 'liquid', 'gas'], 'plasma')
machine.add_transition('transmogrify', 'plasma', 'solid')
# This next transition will never execute
machine.add_transition('transmogrify', 'plasma', 'gas')
```
In this case, calling `transmogrify()` will set the model's state to `'solid'` if it's currently `'plasma'`, and set it to `'plasma'` otherwise. (Note that only the _first_ matching transition will execute; thus, the transition defined in the last line above won't do anything.)
You can also make a trigger cause a transition from _all_ states to a particular destination by using the `'*'` wildcard:
```python
machine.add_transition('to_liquid', '*', 'liquid')
```
Note that wildcard transitions will only apply to states that exist at the time of the add_transition() call. Calling a wildcard-based transition when the model is in a state added after the transition was defined will elicit an invalid transition message, and will not transition to the target state.
#### <a name="reflexive-from-multiple-states"></a>Reflexive transitions from multiple states
A reflexive trigger (trigger that has the same state as source and destination) can easily be added specifying `=` as destination.
This is handy if the same reflexive trigger should be added to multiple states.
For example:
```python
machine.add_transition('touch', ['liquid', 'gas', 'plasma'], '=', after='change_shape')
```
This will add reflexive transitions for all three states with `touch()` as trigger and with `change_shape` executed after each trigger.
#### <a name="internal-transitions"></a>Internal transitions
In contrast to reflexive transitions, internal transitions will never actually leave the state.
This means that transition-related callbacks such as `before` or `after` will be processed while state-related callbacks `exit` or `enter` will not.
To define a transition to be internal, set the destination to `None`.
```python
machine.add_transition('internal', ['liquid', 'gas'], None, after='change_shape')
```
#### <a name="ordered-transitions"></a> Ordered transitions
A common desire is for state transitions to follow a strict linear sequence. For instance, given states `['A', 'B', 'C']`, you might want valid transitions for `A` → `B`, `B` → `C`, and `C` → `A` (but no other pairs).
To facilitate this behavior, Transitions provides an `add_ordered_transitions()` method in the `Machine` class:
```python
states = ['A', 'B', 'C']
# See the "alternative initialization" section for an explanation of the 1st argument to init
machine = Machine(states=states, initial='A')
machine.add_ordered_transitions()
machine.next_state()
print(machine.state)
>>> 'B'
# We can also define a different order of transitions
machine = Machine(states=states, initial='A')
machine.add_ordered_transitions(['A', 'C', 'B'])
machine.next_state()
print(machine.state)
>>> 'C'
# Conditions can be passed to 'add_ordered_transitions' as well
# If one condition is passed, it will be used for all transitions
machine = Machine(states=states, initial='A')
machine.add_ordered_transitions(conditions='check')
# If a list is passed, it must contain exactly as many elements as the
# machine contains states (A->B, ..., X->A)
machine = Machine(states=states, initial='A')
machine.add_ordered_transitions(conditions=['check_A2B', ..., 'check_X2A'])
# Conditions are always applied starting from the initial state
machine = Machine(states=states, initial='B')
machine.add_ordered_transitions(conditions=['check_B2C', ..., 'check_A2B'])
# With `loop=False`, the transition from the last state to the first state will be omitted (e.g. C->A)
# When you also pass conditions, you need to pass one condition less (len(states)-1)
machine = Machine(states=states, initial='A')
machine.add_ordered_transitions(loop=False)
machine.next_state()
machine.next_state()
machine.next_state() # transitions.core.MachineError: "Can't trigger event next_state from state C!"
```
#### <a name="queued-transitions"></a>Queued transitions
The default behaviour in Transitions is to process events instantly. This means events within an `on_enter` method will be processed _before_ callbacks bound to `after` are called.
```python
def go_to_C():
global machine
machine.to_C()
def after_advance():
print("I am in state B now!")
def entering_C():
print("I am in state C now!")
states = ['A', 'B', 'C']
machine = Machine(states=states, initial='A')
# we want a message when state transition to B has been completed
machine.add_transition('advance', 'A', 'B', after=after_advance)
# call transition from state B to state C
machine.on_enter_B(go_to_C)
# we also want a message when entering state C
machine.on_enter_C(entering_C)
machine.advance()
>>> 'I am in state C now!'
>>> 'I am in state B now!' # what?
```
The execution order of this example is
```
prepare -> before -> on_enter_B -> on_enter_C -> after.
```
If queued processing is enabled, a transition will be finished before the next transition is triggered:
```python
machine = Machine(states=states, queued=True, initial='A')
...
machine.advance()
>>> 'I am in state B now!'
>>> 'I am in state C now!' # That's better!
```
This results in
```
prepare -> before -> on_enter_B -> queue(to_C) -> after -> on_enter_C.
```
**Important note:** when processing events in a queue, the trigger call will _always_ return `True`, since there is no way to determine at queuing time whether a transition involving queued calls will ultimately complete successfully. This is true even when only a single event is processed.
```python
machine.add_transition('jump', 'A', 'C', conditions='will_fail')
...
# queued=False
machine.jump()
>>> False
# queued=True
machine.jump()
>>> True
```
When a model is removed from the machine, `transitions` will also remove all related events from the queue.
```python
class Model:
def on_enter_B(self):
self.to_C() # add event to queue ...
self.machine.remove_model(self) # aaaand it's gone
```
#### <a name="conditional-transitions"></a>Conditional transitions
Sometimes you only want a particular transition to execute if a specific condition occurs. You can do this by passing a method, or list of methods, in the `conditions` argument:
```python
# Our Matter class, now with a bunch of methods that return booleans.
class Matter(object):
def is_flammable(self): return False
def is_really_hot(self): return True
machine.add_transition('heat', 'solid', 'gas', conditions='is_flammable')
machine.add_transition('heat', 'solid', 'liquid', conditions=['is_really_hot'])
```
In the above example, calling `heat()` when the model is in state `'solid'` will transition to state `'gas'` if `is_flammable` returns `True`. Otherwise, it will transition to state `'liquid'` if `is_really_hot` returns `True`.
For convenience, there's also an `'unless'` argument that behaves exactly like conditions, but inverted:
```python
machine.add_transition('heat', 'solid', 'gas', unless=['is_flammable', 'is_really_hot'])
```
In this case, the model would transition from solid to gas whenever `heat()` fires, provided that both `is_flammable()` and `is_really_hot()` return `False`.
Note that condition-checking methods will passively receive optional arguments and/or data objects passed to triggering methods. For instance, the following call:
```python
lump.heat(temp=74)
# equivalent to lump.trigger('heat', temp=74)
```
... would pass the `temp=74` optional kwarg to the `is_flammable()` check (possibly wrapped in an `EventData` instance). For more on this, see the [Passing data](#passing-data) section below.
#### <a name="check-transitions"></a>Check transitions
If you want to make sure a transition is possible before you go ahead with it, you can use the `may_<trigger_name>` functions that have been added to your model.
Your model also contains the `may_trigger` function to check a trigger by name:
```python
# check if the current temperature is hot enough to trigger a transition
if lump.may_heat():
# if lump.may_trigger("heat"):
lump.heat()
```
This will execute all `prepare` callbacks and evaluate the conditions assigned to the potential transitions.
Transition checks can also be used when a transition's destination is not available (yet):
```python
machine.add_transition('elevate', 'solid', 'spiritual')
assert not lump.may_elevate() # not ready yet :(
assert not lump.may_trigger("elevate") # same result for checks via trigger name
```
#### <a name="transition-callbacks"></a>Callbacks
You can attach callbacks to transitions as well as states. Every transition has `'before'` and `'after'` attributes that contain a list of methods to call before and after the transition executes:
```python
class Matter(object):
def make_hissing_noises(self): print("HISSSSSSSSSSSSSSSS")
def disappear(self): print("where'd all the liquid go?")
transitions = [
{ 'trigger': 'melt', 'source': 'solid', 'dest': 'liquid', 'before': 'make_hissing_noises'},
{ 'trigger': 'evaporate', 'source': 'liquid', 'dest': 'gas', 'after': 'disappear' }
]
lump = Matter()
machine = Machine(lump, states, transitions=transitions, initial='solid')
lump.melt()
>>> "HISSSSSSSSSSSSSSSS"
lump.evaporate()
>>> "where'd all the liquid go?"
```
There is also a `'prepare'` callback that is executed as soon as a transition starts, before any `'conditions'` are checked or other callbacks are executed.
```python
class Matter(object):
heat = False
attempts = 0
def count_attempts(self): self.attempts += 1
def heat_up(self): self.heat = random.random() < 0.25
def stats(self): print('It took you %i attempts to melt the lump!' %self.attempts)
@property
def is_really_hot(self):
return self.heat
states=['solid', 'liquid', 'gas', 'plasma']
transitions = [
{ 'trigger': 'melt', 'source': 'solid', 'dest': 'liquid', 'prepare': ['heat_up', 'count_attempts'], 'conditions': 'is_really_hot', 'after': 'stats'},
]
lump = Matter()
machine = Machine(lump, states, transitions=transitions, initial='solid')
lump.melt()
lump.melt()
lump.melt()
lump.melt()
>>> "It took you 4 attempts to melt the lump!"
```
Note that `prepare` will not be called unless the current state is a valid source for the named transition.
Default actions meant to be executed before or after _every_ transition can be passed to `Machine` during initialization with
`before_state_change` and `after_state_change` respectively:
```python
class Matter(object):
def make_hissing_noises(self): print("HISSSSSSSSSSSSSSSS")
def disappear(self): print("where'd all the liquid go?")
states=['solid', 'liquid', 'gas', 'plasma']
lump = Matter()
m = Machine(lump, states, before_state_change='make_hissing_noises', after_state_change='disappear')
lump.to_gas()
>>> "HISSSSSSSSSSSSSSSS"
>>> "where'd all the liquid go?"
```
There are also two keywords for callbacks which should be executed _independently_ a) of how many transitions are possible,
b) if any transition succeeds and c) even if an error is raised during the execution of some other callback.
Callbacks passed to `Machine` with `prepare_event` will be executed _once_ before processing possible transitions
(and their individual `prepare` callbacks) takes place.
Callbacks of `finalize_event` will be executed regardless of the success of the processed transitions.
Note that if an error occurred it will be attached to `event_data` as `error` and can be retrieved with `send_event=True`.
```python
from transitions import Machine
class Matter(object):
def raise_error(self, event): raise ValueError("Oh no")
def prepare(self, event): print("I am ready!")
def finalize(self, event): print("Result: ", type(event.error), event.error)
states=['solid', 'liquid', 'gas', 'plasma']
lump = Matter()
m = Machine(lump, states, prepare_event='prepare', before_state_change='raise_error',
finalize_event='finalize', send_event=True)
try:
lump.to_gas()
except ValueError:
pass
print(lump.state)
# >>> I am ready!
# >>> Result: <class 'ValueError'> Oh no
# >>> initial
```
Sometimes things just don't work out as intended and we need to handle exceptions and clean up the mess to keep things going.
We can pass callbacks to `on_exception` to do this:
```python
from transitions import Machine
class Matter(object):
def raise_error(self, event): raise ValueError("Oh no")
def handle_error(self, event):
print("Fixing things ...")
del event.error # it did not happen if we cannot see it ...
states=['solid', 'liquid', 'gas', 'plasma']
lump = Matter()
m = Machine(lump, states, before_state_change='raise_error', on_exception='handle_error', send_event=True)
try:
lump.to_gas()
except ValueError:
pass
print(lump.state)
# >>> Fixing things ...
# >>> initial
```
### <a name="resolution"></a>Callable resolution
As you have probably already realized, the standard way of passing callables to states, conditions and transitions is by name. When processing callbacks and conditions, `transitions` will use their name to retrieve the related callable from the model. If the method cannot be retrieved and it contains dots, `transitions` will treat the name as a path to a module function and try to import it. Alternatively, you can pass names of properties or attributes. They will be wrapped into functions but cannot receive event data for obvious reasons. You can also pass callables such as (bound) functions directly. As mentioned earlier, you can also pass lists/tuples of callables names to the callback parameters. Callbacks will be executed in the order they were added.
```python
from transitions import Machine
from mod import imported_func
import random
class Model(object):
def a_callback(self):
imported_func()
@property
def a_property(self):
""" Basically a coin toss. """
return random.random() < 0.5
an_attribute = False
model = Model()
machine = Machine(model=model, states=['A'], initial='A')
machine.add_transition('by_name', 'A', 'A', conditions='a_property', after='a_callback')
machine.add_transition('by_reference', 'A', 'A', unless=['a_property', 'an_attribute'], after=model.a_callback)
machine.add_transition('imported', 'A', 'A', after='mod.imported_func')
model.by_name()
model.by_reference()
model.imported()
```
The callable resolution is done in `Machine.resolve_callable`.
This method can be overridden in case more complex callable resolution strategies are required.
**Example**
```python
class CustomMachine(Machine):
@staticmethod
def resolve_callable(func, event_data):
# manipulate arguments here and return func, or super() if no manipulation is done.
super(CustomMachine, CustomMachine).resolve_callable(func, event_data)
```
### <a name="execution-order"></a>Callback execution order
In summary, there are currently three ways to trigger events. You can call a model's convenience functions like `lump.melt()`,
execute triggers by name such as `lump.trigger("melt")` or dispatch events on multiple models with `machine.dispatch("melt")`
(see section about multiple models in [alternative initialization patterns](#alternative-initialization-patterns)).
Callbacks on transitions are then executed in the following order:
| Callback | Current State | Comments |
|---------------------------------| :------------------: |---------------------------------------------------------------------------------------------|
| `'machine.prepare_event'` | `source` | executed _once_ before individual transitions are processed |
| `'transition.prepare'` | `source` | executed as soon as the transition starts |
| `'transition.conditions'` | `source` | conditions _may_ fail and halt the transition |
| `'transition.unless'` | `source` | conditions _may_ fail and halt the transition |
| `'machine.before_state_change'` | `source` | default callbacks declared on model |
| `'transition.before'` | `source` | |
| `'state.on_exit'` | `source` | callbacks declared on the source state |
| `<STATE CHANGE>` | | |
| `'state.on_enter'` | `destination` | callbacks declared on the destination state |
| `'transition.after'` | `destination` | |
| `'machine.on_final'` | `destination` | callbacks on children will be called first |
| `'machine.after_state_change'` | `destination` | default callbacks declared on model; will also be called after internal transitions |
| `'machine.on_exception'` | `source/destination` | callbacks will be executed when an exception has been raised |
| `'machine.finalize_event'` | `source/destination` | callbacks will be executed even if no transition took place or an exception has been raised |
If any callback raises an exception, the processing of callbacks is not continued. This means that when an error occurs before the transition (in `state.on_exit` or earlier), it is halted. In case there is a raise after the transition has been conducted (in `state.on_enter` or later), the state change persists and no rollback is happening. Callbacks specified in `machine.finalize_event` will always be executed unless the exception is raised by a finalizing callback itself. Note that each callback sequence has to be finished before the next stage is executed. Blocking callbacks will halt the execution order and therefore block the `trigger` or `dispatch` call itself. If you want callbacks to be executed in parallel, you could have a look at the [extensions](#extensions) `AsyncMachine` for asynchronous processing or `LockedMachine` for threading.
### <a name="passing-data"></a>Passing data
Sometimes you need to pass the callback functions registered at machine initialization some data that reflects the model's current state.
Transitions allows you to do this in two different ways.
First (the default), you can pass any positional or keyword arguments directly to the trigger methods (created when you call `add_transition()`):
```python
class Matter(object):
def __init__(self): self.set_environment()
def set_environment(self, temp=0, pressure=101.325):
self.temp = temp
self.pressure = pressure
def print_temperature(self): print("Current temperature is %d degrees celsius." % self.temp)
def print_pressure(self): print("Current pressure is %.2f kPa." % self.pressure)
lump = Matter()
machine = Machine(lump, ['solid', 'liquid'], initial='solid')
machine.add_transition('melt', 'solid', 'liquid', before='set_environment')
lump.melt(45) # positional arg;
# equivalent to lump.trigger('melt', 45)
lump.print_temperature()
>>> 'Current temperature is 45 degrees celsius.'
machine.set_state('solid') # reset state so we can melt again
lump.melt(pressure=300.23) # keyword args also work
lump.print_pressure()
>>> 'Current pressure is 300.23 kPa.'
```
You can pass any number of arguments you like to the trigger.
There is one important limitation to this approach: every callback function triggered by the state transition must be able to handle _all_ of the arguments. This may cause problems if the callbacks each expect somewhat different data.
To get around this, Transitions supports an alternate method for sending data. If you set `send_event=True` at `Machine` initialization, all arguments to the triggers will be wrapped in an `EventData` instance and passed on to every callback. (The `EventData` object also maintains internal references to the source state, model, transition, machine, and trigger associated with the event, in case you need to access these for anything.)
```python
class Matter(object):
def __init__(self):
self.temp = 0
self.pressure = 101.325
# Note that the sole argument is now the EventData instance.
# This object stores positional arguments passed to the trigger method in the
# .args property, and stores keywords arguments in the .kwargs dictionary.
def set_environment(self, event):
self.temp = event.kwargs.get('temp', 0)
self.pressure = event.kwargs.get('pressure', 101.325)
def print_pressure(self): print("Current pressure is %.2f kPa." % self.pressure)
lump = Matter()
machine = Machine(lump, ['solid', 'liquid'], send_event=True, initial='solid')
machine.add_transition('melt', 'solid', 'liquid', before='set_environment')
lump.melt(temp=45, pressure=1853.68) # keyword args
lump.print_pressure()
>>> 'Current pressure is 1853.68 kPa.'
```
### <a name="alternative-initialization-patterns"></a>Alternative initialization patterns
In all of the examples so far, we've attached a new `Machine` instance to a separate model (`lump`, an instance of class `Matter`). While this separation keeps things tidy (because you don't have to monkey patch a whole bunch of new methods into the `Matter` class), it can also get annoying, since it requires you to keep track of which methods are called on the state machine, and which ones are called on the model that the state machine is bound to (e.g., `lump.on_enter_StateA()` vs. `machine.add_transition()`).
Fortunately, Transitions is flexible, and supports two other initialization patterns.
First, you can create a standalone state machine that doesn't require another model at all. Simply omit the model argument during initialization:
```python
machine = Machine(states=states, transitions=transitions, initial='solid')
machine.melt()
machine.state
>>> 'liquid'
```
If you initialize the machine this way, you can then attach all triggering events (like `evaporate()`, `sublimate()`, etc.) and all callback functions directly to the `Machine` instance.
This approach has the benefit of consolidating all of the state machine functionality in one place, but can feel a little bit unnatural if you think state logic should be contained within the model itself rather than in a separate controller.
An alternative (potentially better) approach is to have the model inherit from the `Machine` class. Transitions is designed to support inheritance seamlessly. (just be sure to override class `Machine`'s `__init__` method!):
```python
class Matter(Machine):
def say_hello(self): print("hello, new state!")
def say_goodbye(self): print("goodbye, old state!")
def __init__(self):
states = ['solid', 'liquid', 'gas']
Machine.__init__(self, states=states, initial='solid')
self.add_transition('melt', 'solid', 'liquid')
lump = Matter()
lump.state
>>> 'solid'
lump.melt()
lump.state
>>> 'liquid'
```
Here you get to consolidate all state machine functionality into your existing model, which often feels more natural than sticking all of the functionality we want in a separate standalone `Machine` instance.
A machine can handle multiple models which can be passed as a list like `Machine(model=[model1, model2, ...])`.
In cases where you want to add models _as well as_ the machine instance itself, you can pass the class variable placeholder (string) `Machine.self_literal` during initialization like `Machine(model=[Machine.self_literal, model1, ...])`.
You can also create a standalone machine, and register models dynamically via `machine.add_model` by passing `model=None` to the constructor.
Furthermore, you can use `machine.dispatch` to trigger events on all currently added models.
Remember to call `machine.remove_model` if machine is long-lasting and your models are temporary and should be garbage collected:
```python
class Matter():
pass
lump1 = Matter()
lump2 = Matter()
# setting 'model' to None or passing an empty list will initialize the machine without a model
machine = Machine(model=None, states=states, transitions=transitions, initial='solid')
machine.add_model(lump1)
machine.add_model(lump2, initial='liquid')
lump1.state
>>> 'solid'
lump2.state
>>> 'liquid'
# custom events as well as auto transitions can be dispatched to all models
machine.dispatch("to_plasma")
lump1.state
>>> 'plasma'
assert lump1.state == lump2.state
machine.remove_model([lump1, lump2])
del lump1 # lump1 is garbage collected
del lump2 # lump2 is garbage collected
```
If you don't provide an initial state in the state machine constructor, `transitions` will create and add a default state called `'initial'`.
If you do not want a default initial state, you can pass `initial=None`.
However, in this case you need to pass an initial state every time you add a model.
```python
machine = Machine(model=None, states=states, transitions=transitions, initial=None)
machine.add_model(Matter())
>>> "MachineError: No initial state configured for machine, must specify when adding model."
machine.add_model(Matter(), initial='liquid')
```
Models with multiple states could attach multiple machines using different `model_attribute` values. As mentioned in [Checking state](#checking-state), this will add custom `is/to_<model_attribute>_<state_name>` functions:
```python
lump = Matter()
matter_machine = Machine(lump, states=['solid', 'liquid', 'gas'], initial='solid')
# add a second machine to the same model but assign a different state attribute
shipment_machine = Machine(lump, states=['delivered', 'shipping'], initial='delivered', model_attribute='shipping_state')
lump.state
>>> 'solid'
lump.is_solid() # check the default field
>>> True
lump.shipping_state
>>> 'delivered'
lump.is_shipping_state_delivered() # check the custom field.
>>> True
lump.to_shipping_state_shipping()
>>> True
lump.is_shipping_state_delivered()
>>> False
```
### Logging
Transitions includes very rudimentary logging capabilities. A number of events – namely, state changes, transition triggers, and conditional checks – are logged as INFO-level events using the standard Python `logging` module. This means you can easily configure logging to standard output in a script:
```python
# Set up logging; The basic log level will be DEBUG
import logging
logging.basicConfig(level=logging.DEBUG)
# Set transitions' log level to INFO; DEBUG messages will be omitted
logging.getLogger('transitions').setLevel(logging.INFO)
# Business as usual
machine = Machine(states=states, transitions=transitions, initial='solid')
...
```
### <a name="restoring"></a>(Re-)Storing machine instances
Machines are picklable and can be stored and loaded with `pickle`. For Python 3.3 and earlier `dill` is required.
```python
import dill as pickle # only required for Python 3.3 and earlier
m = Machine(states=['A', 'B', 'C'], initial='A')
m.to_B()
m.state
>>> B
# store the machine
dump = pickle.dumps(m)
# load the Machine instance again
m2 = pickle.loads(dump)
m2.state
>>> B
m2.states.keys()
>>> ['A', 'B', 'C']
```
### <a name="typing-support"></a> Typing support
As you probably noticed, `transitions` uses some of Python's dynamic features to give you handy ways to handle models. However, static type checkers don't like model attributes and methods not being known before runtime. Historically, `transitions` also didn't assign convenience methods already defined on models to prevent accidental overrides.
But don't worry! You can use the machine constructor parameter `model_override` to change how models are decorated. If you set `model_override=True`, `transitions` will only override already defined methods. This prevents new methods from showing up at runtime and also allows you to define which helper methods you want to use.
```python
from transitions import Machine
# Dynamic assignment
class Model:
pass
model = Model()
default_machine = Machine(model, states=["A", "B"], transitions=[["go", "A", "B"]], initial="A")
print(model.__dict__.keys()) # all convenience functions have been assigned
# >> dict_keys(['trigger', 'to_A', 'may_to_A', 'to_B', 'may_to_B', 'go', 'may_go', 'is_A', 'is_B', 'state'])
assert model.is_A() # Unresolved attribute reference 'is_A' for class 'Model'
# Predefined assigment: We are just interested in calling our 'go' event and will trigger the other events by name
class PredefinedModel:
# state (or another parameter if you set 'model_attribute') will be assigned anyway
# because we need to keep track of the model's state
state: str
def go(self) -> bool:
raise RuntimeError("Should be overridden!")
def trigger(self, trigger_name: str) -> bool:
raise RuntimeError("Should be overridden!")
model = PredefinedModel()
override_machine = Machine(model, states=["A", "B"], transitions=[["go", "A", "B"]], initial="A", model_override=True)
print(model.__dict__.keys())
# >> dict_keys(['trigger', 'go', 'state'])
model.trigger("to_B")
assert model.state == "B"
```
If you want to use all the convenience functions and throw some callbacks into the mix, defining a model can get pretty complicated when you have a lot of states and transitions defined.
The method `generate_base_model` in `transitions` can generate a base model from a machine configuration to help you out with that.
```python
from transitions.experimental.utils import generate_base_model
simple_config = {
"states": ["A", "B"],
"transitions": [
["go", "A", "B"],
],
"initial": "A",
"before_state_change": "call_this",
"model_override": True,
}
class_definition = generate_base_model(simple_config)
with open("base_model.py", "w") as f:
f.write(class_definition)
# ... in another file
from transitions import Machine
from base_model import BaseModel
class Model(BaseModel): # call_this will be an abstract method in BaseModel
def call_this(self) -> None:
# do something
model = Model()
machine = Machine(model, **simple_config)
```
Defining model methods that will be overridden adds a bit of extra work.
It might be cumbersome to switch back and forth to make sure event names are spelled correctly, especially if states and transitions are defined in lists before or after your model. You can cut down on the boilerplate and the uncertainty of working with strings by defining states as enums. You can also define transitions right in your model class with the help of `add_transitions` and `event`.
It's up to you whether you use the function decorator `add_transitions` or event to assign values to attributes depends on your preferred code style.
They both work the same way, have the same signature, and should result in (almost) the same IDE type hints.
As this is still a work in progress, you'll need to create a custom Machine class and use with_model_definitions for transitions to check for transitions defined that way.
```python
from enum import Enum
from transitions.experimental.utils import with_model_definitions, event, add_transitions, transition
from transitions import Machine
class State(Enum):
A = "A"
B = "B"
C = "C"
class Model:
state: State = State.A
@add_transitions(transition(source=State.A, dest=State.B), [State.C, State.A])
@add_transitions({"source": State.B, "dest": State.A})
def foo(self): ...
bar = event(
{"source": State.B, "dest": State.A, "conditions": lambda: False},
transition(source=State.B, dest=State.C)
)
@with_model_definitions # don't forget to define your model with this decorator!
class MyMachine(Machine):
pass
model = Model()
machine = MyMachine(model, states=State, initial=model.state)
model.foo()
model.bar()
assert model.state == State.C
model.foo()
assert model.state == State.A
```
### <a name="extensions"></a> Extensions
Even though the core of transitions is kept lightweight, there are a variety of MixIns to extend its functionality. Currently supported are:
- **Hierarchical State Machines** for nesting and reuse
- **Diagrams** to visualize the current state of a machine
- **Threadsafe Locks** for parallel execution
- **Async callbacks** for asynchronous execution
- **Custom States** for extended state-related behaviour
There are two mechanisms to retrieve a state machine instance with the desired features enabled.
The first approach makes use of the convenience `factory` with the four parameters `graph`, `nested`, `locked` or `asyncio` set to `True` if the feature is required:
```python
from transitions.extensions import MachineFactory
# create a machine with mixins
diagram_cls = MachineFactory.get_predefined(graph=True)
nested_locked_cls = MachineFactory.get_predefined(nested=True, locked=True)
async_machine_cls = MachineFactory.get_predefined(asyncio=True)
# create instances from these classes
# instances can be used like simple machines
machine1 = diagram_cls(model, state, transitions)
machine2 = nested_locked_cls(model, state, transitions)
```
This approach targets experimental use since in this case the underlying classes do not have to be known.
However, classes can also be directly imported from `transitions.extensions`. The naming scheme is as follows:
| | Diagrams | Nested | Locked | Asyncio |
| -----------------------------: | :------: | :----: | :----: | :-----: |
| Machine | ✘ | ✘ | ✘ | ✘ |
| GraphMachine | ✓ | ✘ | ✘ | ✘ |
| HierarchicalMachine | ✘ | ✓ | ✘ | ✘ |
| LockedMachine | ✘ | ✘ | ✓ | ✘ |
| HierarchicalGraphMachine | ✓ | ✓ | ✘ | ✘ |
| LockedGraphMachine | ✓ | ✘ | ✓ | ✘ |
| LockedHierarchicalMachine | ✘ | ✓ | ✓ | ✘ |
| LockedHierarchicalGraphMachine | ✓ | ✓ | ✓ | ✘ |
| AsyncMachine | ✘ | ✘ | ✘ | ✓ |
| AsyncGraphMachine | ✓ | ✘ | ✘ | ✓ |
| HierarchicalAsyncMachine | ✘ | ✓ | ✘ | ✓ |
| HierarchicalAsyncGraphMachine | ✓ | ✓ | ✘ | ✓ |
To use a feature-rich state machine, one could write:
```python
from transitions.extensions import LockedHierarchicalGraphMachine as LHGMachine
machine = LHGMachine(model, states, transitions)
```
#### <a name="hsm"></a>Hierarchical State Machine (HSM)
Transitions includes an extension module which allows nesting states.
This allows us to create contexts and to model cases where states are related to certain subtasks in the state machine.
To create a nested state, either import `NestedState` from transitions or use a dictionary with the initialization arguments `name` and `children`.
Optionally, `initial` can be used to define a sub state to transit to, when the nested state is entered.
```python
from transitions.extensions import HierarchicalMachine
states = ['standing', 'walking', {'name': 'caffeinated', 'children':['dithering', 'running']}]
transitions = [
['walk', 'standing', 'walking'],
['stop', 'walking', 'standing'],
['drink', '*', 'caffeinated'],
['walk', ['caffeinated', 'caffeinated_dithering'], 'caffeinated_running'],
['relax', 'caffeinated', 'standing']
]
machine = HierarchicalMachine(states=states, transitions=transitions, initial='standing', ignore_invalid_triggers=True)
machine.walk() # Walking now
machine.stop() # let's stop for a moment
machine.drink() # coffee time
machine.state
>>> 'caffeinated'
machine.walk() # we have to go faster
machine.state
>>> 'caffeinated_running'
machine.stop() # can't stop moving!
machine.state
>>> 'caffeinated_running'
machine.relax() # leave nested state
machine.state # phew, what a ride
>>> 'standing'
# machine.on_enter_caffeinated_running('callback_method')
```
A configuration making use of `initial` could look like this:
```python
# ...
states = ['standing', 'walking', {'name': 'caffeinated', 'initial': 'dithering', 'children': ['dithering', 'running']}]
transitions = [
['walk', 'standing', 'walking'],
['stop', 'walking', 'standing'],
# this transition will end in 'caffeinated_dithering'...
['drink', '*', 'caffeinated'],
# ... that is why we do not need do specify 'caffeinated' here anymore
['walk', 'caffeinated_dithering', 'caffeinated_running'],
['relax', 'caffeinated', 'standing']
]
# ...
```
The `initial` keyword of the `HierarchicalMachine` constructor accepts nested states (e.g. `initial='caffeinated_running'`) and a list of states which is considered to be a parallel state (e.g. `initial=['A', 'B']`) or the current state of another model (`initial=model.state`) which should be effectively one of the previous mentioned options. Note that when passing a string, `transition` will check the targeted state for `initial` substates and use this as an entry state. This will be done recursively until a substate does not mention an initial state. Parallel states or a state passed as a list will be used 'as is' and no further initial evaluation will be conducted.
Note that your previously created state object _must be_ a `NestedState` or a derived class of it.
The standard `State` class used in simple `Machine` instances lacks features required for nesting.
```python
from transitions.extensions.nesting import HierarchicalMachine, NestedState
from transitions import State
m = HierarchicalMachine(states=['A'], initial='initial')
m.add_state('B') # fine
m.add_state({'name': 'C'}) # also fine
m.add_state(NestedState('D')) # fine as well
m.add_state(State('E')) # does not work!
```
Some things that have to be considered when working with nested states: State _names are concatenated_ with `NestedState.separator`.
Currently the separator is set to underscore ('\_') and therefore behaves similar to the basic machine.
This means a substate `bar` from state `foo` will be known by `foo_bar`. A substate `baz` of `bar` will be referred to as `foo_bar_baz` and so on.
When entering a substate, `enter` will be called for all parent states. The same is true for exiting substates.
Third, nested states can overwrite transition behaviour of their parents.
If a transition is not known to the current state it will be delegated to its parent.
**This means that in the standard configuration, state names in HSMs MUST NOT contain underscores.**
For `transitions` it's impossible to tell whether `machine.add_state('state_name')` should add a state named `state_name` or add a substate `name` to the state `state`.
In some cases this is not sufficient however.
For instance if state names consist of more than one word and you want/need to use underscore to separate them instead of `CamelCase`.
To deal with this, you can change the character used for separation quite easily.
You can even use fancy unicode characters if you use Python 3.
Setting the separator to something else than underscore changes some of the behaviour (auto_transition and setting callbacks) though:
```python
from transitions.extensions import HierarchicalMachine
from transitions.extensions.nesting import NestedState
NestedState.separator = '↦'
states = ['A', 'B',
{'name': 'C', 'children':['1', '2',
{'name': '3', 'children': ['a', 'b', 'c']}
]}
]
transitions = [
['reset', 'C', 'A'],
['reset', 'C↦2', 'C'] # overwriting parent reset
]
# we rely on auto transitions
machine = HierarchicalMachine(states=states, transitions=transitions, initial='A')
machine.to_B() # exit state A, enter state B
machine.to_C() # exit B, enter C
machine.to_C.s3.a() # enter C↦a; enter C↦3↦a;
machine.state
>>> 'C↦3↦a'
assert machine.is_C.s3.a()
machine.to('C↦2') # not interactive; exit C↦3↦a, exit C↦3, enter C↦2
machine.reset() # exit C↦2; reset C has been overwritten by C↦3
machine.state
>>> 'C'
machine.reset() # exit C, enter A
machine.state
>>> 'A'
# s.on_enter('C↦3↦a', 'callback_method')
```
Instead of `to_C_3_a()` auto transition is called as `to_C.s3.a()`. If your substate starts with a digit, transitions adds a prefix 's' ('3' becomes 's3') to the auto transition `FunctionWrapper` to comply with the attribute naming scheme of Python.
If interactive completion is not required, `to('C↦3↦a')` can be called directly. Additionally, `on_enter/exit_<<state name>>` is replaced with `on_enter/exit(state_name, callback)`. State checks can be conducted in a similar fashion. Instead of `is_C_3_a()`, the `FunctionWrapper` variant `is_C.s3.a()` can be used.
To check whether the current state is a substate of a specific state, `is_state` supports the keyword `allow_substates`:
```python
machine.state
>>> 'C.2.a'
machine.is_C() # checks for specific states
>>> False
machine.is_C(allow_substates=True)
>>> True
assert machine.is_C.s2() is False
assert machine.is_C.s2(allow_substates=True) # FunctionWrapper support allow_substate as well
```
You can use enumerations in HSMs as well but keep in mind that `Enum` are compared by value.
If you have a value more than once in a state tree those states cannot be distinguished.
```python
states = [States.RED, States.YELLOW, {'name': States.GREEN, 'children': ['tick', 'tock']}]
states = ['A', {'name': 'B', 'children': states, 'initial': States.GREEN}, States.GREEN]
machine = HierarchicalMachine(states=states)
machine.to_B()
machine.is_GREEN() # returns True even though the actual state is B_GREEN
```
`HierarchicalMachine` has been rewritten from scratch to support parallel states and better isolation of nested states.
This involves some tweaks based on community feedback.
To get an idea of processing order and configuration have a look at the following example:
```python
from transitions.extensions.nesting import HierarchicalMachine
import logging
states = ['A', 'B', {'name': 'C', 'parallel': [{'name': '1', 'children': ['a', 'b', 'c'], 'initial': 'a',
'transitions': [['go', 'a', 'b']]},
{'name': '2', 'children': ['x', 'y', 'z'], 'initial': 'z'}],
'transitions': [['go', '2_z', '2_x']]}]
transitions = [['reset', 'C_1_b', 'B']]
logging.basicConfig(level=logging.INFO)
machine = HierarchicalMachine(states=states, transitions=transitions, initial='A')
machine.to_C()
# INFO:transitions.extensions.nesting:Exited state A
# INFO:transitions.extensions.nesting:Entered state C
# INFO:transitions.extensions.nesting:Entered state C_1
# INFO:transitions.extensions.nesting:Entered state C_2
# INFO:transitions.extensions.nesting:Entered state C_1_a
# INFO:transitions.extensions.nesting:Entered state C_2_z
machine.go()
# INFO:transitions.extensions.nesting:Exited state C_1_a
# INFO:transitions.extensions.nesting:Entered state C_1_b
# INFO:transitions.extensions.nesting:Exited state C_2_z
# INFO:transitions.extensions.nesting:Entered state C_2_x
machine.reset()
# INFO:transitions.extensions.nesting:Exited state C_1_b
# INFO:transitions.extensions.nesting:Exited state C_2_x
# INFO:transitions.extensions.nesting:Exited state C_1
# INFO:transitions.extensions.nesting:Exited state C_2
# INFO:transitions.extensions.nesting:Exited state C
# INFO:transitions.extensions.nesting:Entered state B
```
When using `parallel` instead of `children`, `transitions` will enter all states of the passed list at the same time.
Which substate to enter is defined by `initial` which should _always_ point to a direct substate.
A novel feature is to define local transitions by passing the `transitions` keyword in a state definition.
The above defined transition `['go', 'a', 'b']` is only valid in `C_1`.
While you can reference substates as done in `['go', '2_z', '2_x']` you cannot reference parent states directly in locally defined transitions.
When a parent state is exited, its children will also be exited.
In addition to the processing order of transitions known from `Machine` where transitions are considered in the order they were added, `HierarchicalMachine` considers hierarchy as well.
Transitions defined in substates will be evaluated first (e.g. `C_1_a` is left before `C_2_z`) and transitions defined with wildcard `*` will (for now) only add transitions to root states (in this example `A`, `B`, `C`)
Starting with _0.8.0_ nested states can be added directly and will issue the creation of parent states on-the-fly:
```python
m = HierarchicalMachine(states=['A'], initial='A')
m.add_state('B_1_a')
m.to_B_1()
assert m.is_B(allow_substates=True)
```
_Experimental in 0.9.1:_
You can make use of `on_final` callbacks either in states or on the HSM itself. Callbacks will be triggered if a) the state itself is tagged with `final` and has just been entered or b) all substates are considered final and at least one substate just entered a final state. In case of b) all parents will be considered final as well if condition b) holds true for them. This might be useful in cases where processing happens in parallel and your HSM or any parent state should be notified when all substates have reached a final state:
```python
from transitions.extensions import HierarchicalMachine
from functools import partial
# We initialize this parallel HSM in state A:
# / X
# / / yI
# A -> B - Y - yII [final]
# \ Z - zI
# \ zII [final]
def final_event_raised(name):
print("{} is final!".format(name))
states = ['A', {'name': 'B', 'parallel': [{'name': 'X', 'final': True, 'on_final': partial(final_event_raised, 'X')},
{'name': 'Y', 'transitions': [['final_Y', 'yI', 'yII']],
'initial': 'yI',
'on_final': partial(final_event_raised, 'Y'),
'states':
['yI', {'name': 'yII', 'final': True}]
},
{'name': 'Z', 'transitions': [['final_Z', 'zI', 'zII']],
'initial': 'zI',
'on_final': partial(final_event_raised, 'Z'),
'states':
['zI', {'name': 'zII', 'final': True}]
},
],
"on_final": partial(final_event_raised, 'B')}]
machine = HierarchicalMachine(states=states, on_final=partial(final_event_raised, 'Machine'), initial='A')
# X will emit a final event right away
machine.to_B()
# >>> X is final!
print(machine.state)
# >>> ['B_X', 'B_Y_yI', 'B_Z_zI']
# Y's substate is final now and will trigger 'on_final' on Y
machine.final_Y()
# >>> Y is final!
print(machine.state)
# >>> ['B_X', 'B_Y_yII', 'B_Z_zI']
# Z's substate becomes final which also makes all children of B final and thus machine itself
machine.final_Z()
# >>> Z is final!
# >>> B is final!
# >>> Machine is final!
```
##### Reuse of previously created HSMs
Besides semantic order, nested states are very handy if you want to specify state machines for specific tasks and plan to reuse them.
Before _0.8.0_, a `HierarchicalMachine` would not integrate the machine instance itself but the states and transitions by creating copies of them.
However, since _0.8.0_ `(Nested)State` instances are just **referenced** which means changes in one machine's collection of states and events will influence the other machine instance. Models and their state will not be shared though.
Note that events and transitions are also copied by reference and will be shared by both instances if you do not use the `remap` keyword.
This change was done to be more in line with `Machine` which also uses passed `State` instances by reference.
```python
count_states = ['1', '2', '3', 'done']
count_trans = [
['increase', '1', '2'],
['increase', '2', '3'],
['decrease', '3', '2'],
['decrease', '2', '1'],
['done', '3', 'done'],
['reset', '*', '1']
]
counter = HierarchicalMachine(states=count_states, transitions=count_trans, initial='1')
counter.increase() # love my counter
states = ['waiting', 'collecting', {'name': 'counting', 'children': counter}]
transitions = [
['collect', '*', 'collecting'],
['wait', '*', 'waiting'],
['count', 'collecting', 'counting']
]
collector = HierarchicalMachine(states=states, transitions=transitions, initial='waiting')
collector.collect() # collecting
collector.count() # let's see what we got; counting_1
collector.increase() # counting_2
collector.increase() # counting_3
collector.done() # collector.state == counting_done
collector.wait() # collector.state == waiting
```
If a `HierarchicalMachine` is passed with the `children` keyword, the initial state of this machine will be assigned to the new parent state.
In the above example we see that entering `counting` will also enter `counting_1`.
If this is undesired behaviour and the machine should rather halt in the parent state, the user can pass `initial` as `False` like `{'name': 'counting', 'children': counter, 'initial': False}`.
Sometimes you want such an embedded state collection to 'return' which means after it is done it should exit and transit to one of your super states.
To achieve this behaviour you can remap state transitions.
In the example above we would like the counter to return if the state `done` was reached.
This is done as follows:
```python
states = ['waiting', 'collecting', {'name': 'counting', 'children': counter, 'remap': {'done': 'waiting'}}]
... # same as above
collector.increase() # counting_3
collector.done()
collector.state
>>> 'waiting' # be aware that 'counting_done' will be removed from the state machine
```
As mentioned above, using `remap` will **copy** events and transitions since they could not be valid in the original state machine.
If a reused state machine does not have a final state, you can of course add the transitions manually.
If 'counter' had no 'done' state, we could just add `['done', 'counter_3', 'waiting']` to achieve the same behaviour.
In cases where you want states and transitions to be copied by value rather than reference (for instance, if you want to keep the pre-0.8 behaviour) you can do so by creating a `NestedState` and assigning deep copies of the machine's events and states to it.
```python
from transitions.extensions.nesting import NestedState
from copy import deepcopy
# ... configuring and creating counter
counting_state = NestedState(name="counting", initial='1')
counting_state.states = deepcopy(counter.states)
counting_state.events = deepcopy(counter.events)
states = ['waiting', 'collecting', counting_state]
```
For complex state machines, sharing configurations rather than instantiated machines might be more feasible.
Especially since instantiated machines must be derived from `HierarchicalMachine`.
Such configurations can be stored and loaded easily via JSON or YAML (see the [FAQ](examples/Frequently%20asked%20questions.ipynb)).
`HierarchicalMachine` allows defining substates either with the keyword `children` or `states`.
If both are present, only `children` will be considered.
```python
counter_conf = {
'name': 'counting',
'states': ['1', '2', '3', 'done'],
'transitions': [
['increase', '1', '2'],
['increase', '2', '3'],
['decrease', '3', '2'],
['decrease', '2', '1'],
['done', '3', 'done'],
['reset', '*', '1']
],
'initial': '1'
}
collector_conf = {
'name': 'collector',
'states': ['waiting', 'collecting', counter_conf],
'transitions': [
['collect', '*', 'collecting'],
['wait', '*', 'waiting'],
['count', 'collecting', 'counting']
],
'initial': 'waiting'
}
collector = HierarchicalMachine(**collector_conf)
collector.collect()
collector.count()
collector.increase()
assert collector.is_counting_2()
```
#### <a name="diagrams"></a> Diagrams
Additional Keywords:
- `title` (optional): Sets the title of the generated image.
- `show_conditions` (default False): Shows conditions at transition edges
- `show_auto_transitions` (default False): Shows auto transitions in graph
- `show_state_attributes` (default False): Show callbacks (enter, exit), tags and timeouts in graph
Transitions can generate basic state diagrams displaying all valid transitions between states.
The basic diagram support generates a [mermaid](https://mermaid.js.org) state machine definition which can be used with mermaid's [live editor](https://mermaid.live), in markdown files in GitLab or GitHub and other web services.
For instance, this code:
```python
from transitions.extensions.diagrams import HierarchicalGraphMachine
import pyperclip
states = ['A', 'B', {'name': 'C',
'final': True,
'parallel': [{'name': '1', 'children': ['a', {"name": "b", "final": True}],
'initial': 'a',
'transitions': [['go', 'a', 'b']]},
{'name': '2', 'children': ['a', {"name": "b", "final": True}],
'initial': 'a',
'transitions': [['go', 'a', 'b']]}]}]
transitions = [['reset', 'C', 'A'], ["init", "A", "B"], ["do", "B", "C"]]
m = HierarchicalGraphMachine(states=states, transitions=transitions, initial="A", show_conditions=True,
title="Mermaid", graph_engine="mermaid", auto_transitions=False)
m.init()
pyperclip.copy(m.get_graph().draw(None)) # using pyperclip for convenience
print("Graph copied to clipboard!")
```
Produces this diagram (check the document source to see the markdown notation):
```mermaid
---
Mermaid Graph
---
stateDiagram-v2
direction LR
classDef s_default fill:white,color:black
classDef s_inactive fill:white,color:black
classDef s_parallel color:black,fill:white
classDef s_active color:red,fill:darksalmon
classDef s_previous color:blue,fill:azure
state "A" as A
Class A s_previous
state "B" as B
Class B s_active
state "C" as C
C --> [*]
Class C s_default
state C {
state "1" as C_1
state C_1 {
[*] --> C_1_a
state "a" as C_1_a
state "b" as C_1_b
C_1_b --> [*]
}
--
state "2" as C_2
state C_2 {
[*] --> C_2_a
state "a" as C_2_a
state "b" as C_2_b
C_2_b --> [*]
}
}
C --> A: reset
A --> B: init
B --> C: do
C_1_a --> C_1_b: go
C_2_a --> C_2_b: go
[*] --> A
```
To use more sophisticated graphing functionality, you'll need to have `graphviz` and/or `pygraphviz` installed.
To generate graphs with the package `graphviz`, you need to install [Graphviz](https://graphviz.org/) manually or via a package manager.
sudo apt-get install graphviz graphviz-dev # Ubuntu and Debian
brew install graphviz # MacOS
conda install graphviz python-graphviz # (Ana)conda
Now you can install the actual Python packages
pip install graphviz pygraphviz # install graphviz and/or pygraphviz manually...
pip install transitions[diagrams] # ... or install transitions with 'diagrams' extras which currently depends on pygraphviz
Currently, `GraphMachine` will use `pygraphviz` when available and fall back to `graphviz` when `pygraphviz` cannot be
found.
If `graphviz` is not available either, `mermaid` will be used.
This can be overridden by passing `graph_engine="graphviz"` (or `"mermaid"`) to the constructor.
Note that this default might change in the future and `pygraphviz` support may be dropped.
With `Model.get_graph()` you can get the current graph or the region of interest (roi) and draw it like this:
```python
# import transitions
from transitions.extensions import GraphMachine
m = Model()
# without further arguments pygraphviz will be used
machine = GraphMachine(model=m, ...)
# when you want to use graphviz explicitly
machine = GraphMachine(model=m, graph_engine="graphviz", ...)
# in cases where auto transitions should be visible
machine = GraphMachine(model=m, show_auto_transitions=True, ...)
# draw the whole graph ...
m.get_graph().draw('my_state_diagram.png', prog='dot')
# ... or just the region of interest
# (previous state, active state and all reachable states)
roi = m.get_graph(show_roi=True).draw('my_state_diagram.png', prog='dot')
```
This produces something like this:

Independent of the backend you use, the draw function also accepts a file descriptor or a binary stream as the first argument. If you set this parameter to `None`, the byte stream will be returned:
```python
import io
with open('a_graph.png', 'bw') as f:
# you need to pass the format when you pass objects instead of filenames.
m.get_graph().draw(f, format="png", prog='dot')
# you can pass a (binary) stream too
b = io.BytesIO()
m.get_graph().draw(b, format="png", prog='dot')
# or just handle the binary string yourself
result = m.get_graph().draw(None, format="png", prog='dot')
assert result == b.getvalue()
```
References and partials passed as callbacks will be resolved as good as possible:
```python
from transitions.extensions import GraphMachine
from functools import partial
class Model:
def clear_state(self, deep=False, force=False):
print("Clearing state ...")
return True
model = Model()
machine = GraphMachine(model=model, states=['A', 'B', 'C'],
transitions=[
{'trigger': 'clear', 'source': 'B', 'dest': 'A', 'conditions': model.clear_state},
{'trigger': 'clear', 'source': 'C', 'dest': 'A',
'conditions': partial(model.clear_state, False, force=True)},
],
initial='A', show_conditions=True)
model.get_graph().draw('my_state_diagram.png', prog='dot')
```
This should produce something similar to this:

If the format of references does not suit your needs, you can override the static method `GraphMachine.format_references`. If you want to skip reference entirely, just let `GraphMachine.format_references` return `None`.
Also, have a look at our [example](./examples) IPython/Jupyter notebooks for a more detailed example about how to use and edit graphs.
#### <a name="threading"></a> Threadsafe(-ish) State Machine
In cases where event dispatching is done in threads, one can use either `LockedMachine` or `LockedHierarchicalMachine` where **function access** (!sic) is secured with reentrant locks.
This does not save you from corrupting your machine by tinkering with member variables of your model or state machine.
```python
from transitions.extensions import LockedMachine
from threading import Thread
import time
states = ['A', 'B', 'C']
machine = LockedMachine(states=states, initial='A')
# let us assume that entering B will take some time
thread = Thread(target=machine.to_B)
thread.start()
time.sleep(0.01) # thread requires some time to start
machine.to_C() # synchronized access; won't execute before thread is done
# accessing attributes directly
thread = Thread(target=machine.to_B)
thread.start()
machine.new_attrib = 42 # not synchronized! will mess with execution order
```
Any python context manager can be passed in via the `machine_context` keyword argument:
```python
from transitions.extensions import LockedMachine
from threading import RLock
states = ['A', 'B', 'C']
lock1 = RLock()
lock2 = RLock()
machine = LockedMachine(states=states, initial='A', machine_context=[lock1, lock2])
```
Any contexts via `machine_model` will be shared between all models registered with the `Machine`.
Per-model contexts can be added as well:
```python
lock3 = RLock()
machine.add_model(model, model_context=lock3)
```
It's important that all user-provided context managers are re-entrant since the state machine will call them multiple
times, even in the context of a single trigger invocation.
#### <a name="async"></a> Using async callbacks
If you are using Python 3.7 or later, you can use `AsyncMachine` to work with asynchronous callbacks.
You can mix synchronous and asynchronous callbacks if you like but this may have undesired side effects.
Note that events need to be awaited and the event loop must also be handled by you.
```python
from transitions.extensions.asyncio import AsyncMachine
import asyncio
import time
class AsyncModel:
def prepare_model(self):
print("I am synchronous.")
self.start_time = time.time()
async def before_change(self):
print("I am asynchronous and will block now for 100 milliseconds.")
await asyncio.sleep(0.1)
print("I am done waiting.")
def sync_before_change(self):
print("I am synchronous and will block the event loop (what I probably shouldn't)")
time.sleep(0.1)
print("I am done waiting synchronously.")
def after_change(self):
print(f"I am synchronous again. Execution took {int((time.time() - self.start_time) * 1000)} ms.")
transition = dict(trigger="start", source="Start", dest="Done", prepare="prepare_model",
before=["before_change"] * 5 + ["sync_before_change"],
after="after_change") # execute before function in asynchronously 5 times
model = AsyncModel()
machine = AsyncMachine(model, states=["Start", "Done"], transitions=[transition], initial='Start')
asyncio.get_event_loop().run_until_complete(model.start())
# >>> I am synchronous.
# I am asynchronous and will block now for 100 milliseconds.
# I am asynchronous and will block now for 100 milliseconds.
# I am asynchronous and will block now for 100 milliseconds.
# I am asynchronous and will block now for 100 milliseconds.
# I am asynchronous and will block now for 100 milliseconds.
# I am synchronous and will block the event loop (what I probably shouldn't)
# I am done waiting synchronously.
# I am done waiting.
# I am done waiting.
# I am done waiting.
# I am done waiting.
# I am done waiting.
# I am synchronous again. Execution took 101 ms.
assert model.is_Done()
```
So, why do you need to use Python 3.7 or later you may ask.
Async support has been introduced earlier.
`AsyncMachine` makes use of `contextvars` to handle running callbacks when new events arrive before a transition
has been finished:
```python
async def await_never_return():
await asyncio.sleep(100)
raise ValueError("That took too long!")
async def fix():
await m2.fix()
m1 = AsyncMachine(states=['A', 'B', 'C'], initial='A', name="m1")
m2 = AsyncMachine(states=['A', 'B', 'C'], initial='A', name="m2")
m2.add_transition(trigger='go', source='A', dest='B', before=await_never_return)
m2.add_transition(trigger='fix', source='A', dest='C')
m1.add_transition(trigger='go', source='A', dest='B', after='go')
m1.add_transition(trigger='go', source='B', dest='C', after=fix)
asyncio.get_event_loop().run_until_complete(asyncio.gather(m2.go(), m1.go()))
assert m1.state == m2.state
```
This example actually illustrates two things:
First, that 'go' called in m1's transition from `A` to be `B` is not cancelled and second, calling `m2.fix()` will
halt the transition attempt of m2 from `A` to `B` by executing 'fix' from `A` to `C`.
This separation would not be possible without `contextvars`.
Note that `prepare` and `conditions` are NOT treated as ongoing transitions.
This means that after `conditions` have been evaluated, a transition is executed even though another event already happened.
Tasks will only be cancelled when run as a `before` callback or later.
`AsyncMachine` features a model-special queue mode which can be used when `queued='model'` is passed to the constructor.
With a model-specific queue, events will only be queued when they belong to the same model.
Furthermore, a raised exception will only clear the event queue of the model that raised that exception.
For the sake of simplicity, let's assume that every event in `asyncio.gather` below is not triggered at the same time but slightly delayed:
```python
asyncio.gather(model1.event1(), model1.event2(), model2.event1())
# execution order with AsyncMachine(queued=True)
# model1.event1 -> model1.event2 -> model2.event1
# execution order with AsyncMachine(queued='model')
# (model1.event1, model2.event1) -> model1.event2
asyncio.gather(model1.event1(), model1.error(), model1.event3(), model2.event1(), model2.event2(), model2.event3())
# execution order with AsyncMachine(queued=True)
# model1.event1 -> model1.error
# execution order with AsyncMachine(queued='model')
# (model1.event1, model2.event1) -> (model1.error, model2.event2) -> model2.event3
```
Note that queue modes must not be changed after machine construction.
#### <a name="state-features"></a>Adding features to states
If your superheroes need some custom behaviour, you can throw in some extra functionality by decorating machine states:
```python
from time import sleep
from transitions import Machine
from transitions.extensions.states import add_state_features, Tags, Timeout
@add_state_features(Tags, Timeout)
class CustomStateMachine(Machine):
pass
class SocialSuperhero(object):
def __init__(self):
self.entourage = 0
def on_enter_waiting(self):
self.entourage += 1
states = [{'name': 'preparing', 'tags': ['home', 'busy']},
{'name': 'waiting', 'timeout': 1, 'on_timeout': 'go'},
{'name': 'away'}] # The city needs us!
transitions = [['done', 'preparing', 'waiting'],
['join', 'waiting', 'waiting'], # Entering Waiting again will increase our entourage
['go', 'waiting', 'away']] # Okay, let' move
hero = SocialSuperhero()
machine = CustomStateMachine(model=hero, states=states, transitions=transitions, initial='preparing')
assert hero.state == 'preparing' # Preparing for the night shift
assert machine.get_state(hero.state).is_busy # We are at home and busy
hero.done()
assert hero.state == 'waiting' # Waiting for fellow superheroes to join us
assert hero.entourage == 1 # It's just us so far
sleep(0.7) # Waiting...
hero.join() # Weeh, we got company
sleep(0.5) # Waiting...
hero.join() # Even more company \o/
sleep(2) # Waiting...
assert hero.state == 'away' # Impatient superhero already left the building
assert machine.get_state(hero.state).is_home is False # Yupp, not at home anymore
assert hero.entourage == 3 # At least he is not alone
```
Currently, transitions comes equipped with the following state features:
- **Timeout** -- triggers an event after some time has passed
- keyword: `timeout` (int, optional) -- if passed, an entered state will timeout after `timeout` seconds
- keyword: `on_timeout` (string/callable, optional) -- will be called when timeout time has been reached
- will raise an `AttributeError` when `timeout` is set but `on_timeout` is not
- Note: A timeout is triggered in a thread. This implies several limitations (e.g. catching Exceptions raised in timeouts). Consider an event queue for more sophisticated applications.
- **Tags** -- adds tags to states
- keyword: `tags` (list, optional) -- assigns tags to a state
- `State.is_<tag_name>` will return `True` when the state has been tagged with `tag_name`, else `False`
- **Error** -- raises a `MachineError` when a state cannot be left
- inherits from `Tags` (if you use `Error` do not use `Tags`)
- keyword: `accepted` (bool, optional) -- marks a state as accepted
- alternatively the keyword `tags` can be passed, containing 'accepted'
- Note: Errors will only be raised if `auto_transitions` has been set to `False`. Otherwise every state can be exited with `to_<state>` methods.
- **Volatile** -- initialises an object every time a state is entered
- keyword: `volatile` (class, optional) -- every time the state is entered an object of type class will be assigned to the model. The attribute name is defined by `hook`. If omitted, an empty VolatileObject will be created instead
- keyword: `hook` (string, default='scope') -- The model's attribute name for the temporal object.
You can write your own `State` extensions and add them the same way. Just note that `add_state_features` expects _Mixins_. This means your extension should always call the overridden methods `__init__`, `enter` and `exit`. Your extension may inherit from _State_ but will also work without it.
Using `@add_state_features` has a drawback which is that decorated machines cannot be pickled (more precisely, the dynamically generated `CustomState` cannot be pickled).
This might be a reason to write a dedicated custom state class instead.
Depending on the chosen state machine, your custom state class may need to provide certain state features. For instance, `HierarchicalMachine` requires your custom state to be an instance of `NestedState` (`State` is not sufficient). To inject your states you can either assign them to your `Machine`'s class attribute `state_cls` or override `Machine.create_state` in case you need some specific procedures done whenever a state is created:
```python
from transitions import Machine, State
class MyState(State):
pass
class CustomMachine(Machine):
# Use MyState as state class
state_cls = MyState
class VerboseMachine(Machine):
# `Machine._create_state` is a class method but we can
# override it to be an instance method
def _create_state(self, *args, **kwargs):
print("Creating a new state with machine '{0}'".format(self.name))
return MyState(*args, **kwargs)
```
If you want to avoid threads in your `AsyncMachine` entirely, you can replace the `Timeout` state feature with `AsyncTimeout` from the `asyncio` extension:
```python
import asyncio
from transitions.extensions.states import add_state_features
from transitions.extensions.asyncio import AsyncTimeout, AsyncMachine
@add_state_features(AsyncTimeout)
class TimeoutMachine(AsyncMachine):
pass
states = ['A', {'name': 'B', 'timeout': 0.2, 'on_timeout': 'to_C'}, 'C']
m = TimeoutMachine(states=states, initial='A', queued=True) # see remark below
asyncio.run(asyncio.wait([m.to_B(), asyncio.sleep(0.1)]))
assert m.is_B() # timeout shouldn't be triggered
asyncio.run(asyncio.wait([m.to_B(), asyncio.sleep(0.3)]))
assert m.is_C() # now timeout should have been processed
```
You should consider passing `queued=True` to the `TimeoutMachine` constructor. This will make sure that events are processed sequentially and avoid asynchronous [racing conditions](https://github.com/pytransitions/transitions/issues/459) that may appear when timeout and event happen in proximity.
#### <a name="django-support"></a> Using transitions together with Django
You can have a look at the [FAQ](examples/Frequently%20asked%20questions.ipynb) for some inspiration or checkout `django-transitions`.
It has been developed by Christian Ledermann and is also hosted on [Github](https://github.com/PrimarySite/django-transitions).
[The documentation](https://django-transitions.readthedocs.io/en/latest/) contains some usage examples.
### <a name="bug-reports"></a>I have a [bug report/issue/question]...
First, congratulations! You reached the end of the documentation!
If you want to try out `transitions` before you install it, you can do that in an interactive Jupyter notebook at mybinder.org.
Just click this button 👉 [](https://mybinder.org/v2/gh/pytransitions/transitions/master?filepath=examples%2FPlayground.ipynb).
For bug reports and other issues, please [open an issue](https://github.com/pytransitions/transitions) on GitHub.
For usage questions, post on Stack Overflow, making sure to tag your question with the [`pytransitions` tag](https://stackoverflow.com/questions/tagged/pytransitions). Do not forget to have a look at the [extended examples](./examples)!
For any other questions, solicitations, or large unrestricted monetary gifts, email [Tal Yarkoni](mailto:tyarkoni@gmail.com) (initial author) and/or [Alexander Neumann](mailto:aleneum@gmail.com) (current maintainer).
|