1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
import os, sys
from Bio import AlignIO, Phylo
from .vcf_utils import read_vcf, write_vcf
from .seq_utils import alphabets
from Bio import __version__ as bioversion
from . import version as treetime_version
import numpy as np
def get_outdir(params, suffix='_treetime'):
if params.outdir:
if os.path.exists(params.outdir):
if os.path.isdir(params.outdir):
return params.outdir.rstrip('/') + '/'
else:
print("designated output location %s is not a directory"%params.outdir, file=sys.stderr)
else:
os.makedirs(params.outdir)
return params.outdir.rstrip('/') + '/'
from datetime import datetime
outdir_stem = datetime.now().date().isoformat()
outdir = outdir_stem + suffix.rstrip('/')+'/'
count = 1
while os.path.exists(outdir):
outdir = outdir_stem + '-%04d'%count + suffix.rstrip('/')+'/'
count += 1
os.makedirs(outdir)
return outdir
def get_basename(params, outdir):
# if params.aln:
# basename = outdir + '.'.join(params.aln.split('/')[-1].split('.')[:-1])
# elif params.tree:
# basename = outdir + '.'.join(params.tree.split('/')[-1].split('.')[:-1])
# else:
basename = outdir
return basename
def read_in_DRMs(drm_file, offset):
import pandas as pd
DRMs = {}
drmPositions = []
df = pd.read_csv(drm_file, sep='\t')
for mi, m in df.iterrows():
pos = m.GENOMIC_POSITION-1+offset #put in correct numbering
drmPositions.append(pos)
if pos in DRMs:
DRMs[pos]['alt_base'][m.ALT_BASE] = m.SUBSTITUTION
else:
DRMs[pos] = {}
DRMs[pos]['drug'] = m.DRUG
DRMs[pos]['alt_base'] = {}
DRMs[pos]['alt_base'][m.ALT_BASE] = m.SUBSTITUTION
DRMs[pos]['gene'] = m.GENE
drmPositions = np.array(drmPositions)
drmPositions = np.unique(drmPositions)
drmPositions = np.sort(drmPositions)
DRM_info = {'DRMs': DRMs,
'drmPositions': drmPositions}
return DRM_info
def read_if_vcf(params):
"""
Checks if input is VCF and reads in appropriately if it is
"""
ref = None
aln = params.aln
fixed_pi = None
if hasattr(params, 'aln') and params.aln is not None:
if any([params.aln.lower().endswith(x) for x in ['.vcf', '.vcf.gz']]):
if not params.vcf_reference:
print("ERROR: a reference Fasta is required with VCF-format alignments")
return -1
compress_seq = read_vcf(params.aln, params.vcf_reference)
sequences = compress_seq['sequences']
ref = compress_seq['reference']
aln = sequences
if not hasattr(params, 'gtr') or params.gtr=="infer": #if not specified, set it:
alpha = alphabets['aa'] if params.aa else alphabets['nuc']
fixed_pi = [ref.count(base)/len(ref) for base in alpha]
if fixed_pi[-1] == 0:
fixed_pi[-1] = 0.05
fixed_pi = [v-0.01 for v in fixed_pi]
return aln, ref, fixed_pi
def plot_rtt(tt, fname):
tt.plot_root_to_tip()
from matplotlib import pyplot as plt
plt.savefig(fname)
print("--- root-to-tip plot saved to \n\t"+fname)
def export_sequences_and_tree(tt, basename, is_vcf=False, zero_based=False,
report_ambiguous=False, timetree=False, confidence=False,
reconstruct_tip_states=False, tree_suffix=''):
seq_info = is_vcf or tt.aln
if is_vcf:
outaln_name = basename + f'ancestral_sequences{tree_suffix}.vcf'
write_vcf(tt.get_reconstructed_alignment(reconstruct_tip_states=reconstruct_tip_states), outaln_name)
elif tt.aln:
outaln_name = basename + f'ancestral_sequences{tree_suffix}.fasta'
AlignIO.write(tt.get_reconstructed_alignment(reconstruct_tip_states=reconstruct_tip_states), outaln_name, 'fasta')
if seq_info:
print("\n--- alignment including ancestral nodes saved as \n\t %s\n"%outaln_name)
# decorate tree with inferred mutations
terminal_count = 0
offset = 0 if zero_based else 1
if timetree:
dates_fname = basename + f'dates{tree_suffix}.tsv'
fh_dates = open(dates_fname, 'w', encoding='utf-8')
if confidence:
fh_dates.write('#Lower and upper bound delineate the 90% max posterior region\n')
fh_dates.write('#node\tdate\tnumeric date\tlower bound\tupper bound\n')
else:
fh_dates.write('#node\tdate\tnumeric date\n')
mutations_out = open(basename + "branch_mutations.txt", "w")
mutations_out.write("node\tstate1\tpos\tstate2\n")
for n in tt.tree.find_clades():
if timetree:
if confidence:
if n.bad_branch:
fh_dates.write('%s\t--\t--\t--\t--\n'%(n.name))
else:
conf = tt.get_max_posterior_region(n, fraction=0.9)
fh_dates.write('%s\t%s\t%f\t%f\t%f\n'%(n.name, n.date, n.numdate,conf[0], conf[1]))
else:
if n.bad_branch:
fh_dates.write('%s\t--\t--\n'%(n.name))
else:
fh_dates.write('%s\t%s\t%f\n'%(n.name, n.date, n.numdate))
n.confidence=None
# due to a bug in older versions of biopython that truncated filenames in nexus export
# we truncate them by hand and make them unique.
if n.is_terminal() and len(n.name)>40 and bioversion<"1.69":
n.name = n.name[:35]+'_%03d'%terminal_count
terminal_count+=1
n.comment=''
if seq_info and len(n.mutations):
if n.mask is None:
if report_ambiguous:
n.comment= '&mutations="' + ','.join([a+str(pos + offset)+d for (a,pos, d) in n.mutations])+'"'
else:
n.comment= '&mutations="' + ','.join([a+str(pos + offset)+d for (a,pos, d) in n.mutations
if tt.gtr.ambiguous not in [a,d]])+'"'
else:
if report_ambiguous:
n.comment= '&mutations="' + ','.join([a+str(pos + offset)+d for (a,pos, d) in n.mutations if n.mask[pos]>0])+f'",mcc="{n.mcc}"'
else:
n.comment= '&mutations="' + ','.join([a+str(pos + offset)+d for (a,pos, d) in n.mutations
if tt.gtr.ambiguous not in [a,d] and n.mask[pos]>0])+f'",mcc="{n.mcc}"'
for (a, pos, d) in n.mutations:
if tt.gtr.ambiguous not in [a,d] or report_ambiguous:
mutations_out.write("%s\t%s\t%s\t%s\n" %(n.name, a, pos + 1, d))
if timetree:
n.comment+=(',' if n.comment else '&') + 'date=%1.2f'%n.numdate
mutations_out.close()
# write tree to file
fmt_bl = "%1.7f" if tt.data.full_length<1e6 else "%1.9e"
if timetree:
outtree_name = basename + f'timetree{tree_suffix}.nexus'
print("--- saved divergence times in \n\t %s\n"%dates_fname)
Phylo.write(tt.tree, outtree_name, 'nexus')
else:
outtree_name = basename + f'annotated_tree{tree_suffix}.nexus'
Phylo.write(tt.tree, outtree_name, 'nexus', format_branch_length=fmt_bl)
print("--- tree saved in nexus format as \n\t %s\n"%outtree_name)
# Only create auspice json if there is sequence information
auspice = create_auspice_json(tt, timetree=timetree, confidence=confidence, seq_info=seq_info)
outtree_name_json = basename + f'auspice_tree{tree_suffix}.json'
with open(outtree_name_json, 'w') as fh:
import json
json.dump(auspice, fh, indent=0)
print("--- tree saved in auspice json format as \n\t %s\n"%outtree_name_json)
if timetree:
for n in tt.tree.find_clades():
n.branch_length = n.mutation_length
outtree_name = basename + f'divergence_tree{tree_suffix}.nexus'
Phylo.write(tt.tree, outtree_name, 'nexus', format_branch_length=fmt_bl)
print("--- divergence tree saved in nexus format as \n\t %s\n"%outtree_name)
if hasattr(tt, 'outliers') and tt.outliers is not None:
print("--- saved detected outliers as " + basename + 'outliers.tsv')
tt.outliers.to_csv(basename + 'outliers.tsv', sep='\t')
def print_save_plot_skyline(tt, n_std=2.0, screen=True, save='', plot='', gen=50):
if plot:
import matplotlib.pyplot as plt
skyline, conf = tt.merger_model.skyline_inferred(gen=gen, confidence=n_std)
if save: fh = open(save, 'w', encoding='utf-8')
header1 = "Skyline assuming "+ str(gen)+" gen/year and approximate confidence bounds (+/- %f standard deviations of the LH)\n"%n_std
header2 = "date \tN_e \tlower \tupper"
if screen: print('\t'+header1+'\t'+header2)
if save: fh.write("#"+ header1+'#'+header2+'\n')
for (x,y, y1, y2) in zip(skyline.x, skyline.y, conf[0], conf[1]):
if screen: print("\t%1.3f\t%1.3e\t%1.3e\t%1.3e"%(x,y, y1, y2))
if save: fh.write("%1.3f\t%1.3e\t%1.3e\t%1.3e\n"%(x,y, y1, y2))
if save:
print("\n --- written skyline to %s\n"%save)
fh.close()
if plot:
plt.figure()
plt.fill_between(skyline.x, conf[0], conf[1], color=(0.8, 0.8, 0.8))
plt.plot(skyline.x, skyline.y, label='maximum likelihood skyline')
plt.yscale('log')
plt.legend()
plt.ticklabel_format(axis='x',useOffset=False)
plt.savefig(plot)
def create_auspice_json(tt, timetree=False, confidence=False, seq_info=False):
# mock up meta data for auspice json
from datetime import datetime
meta = {
"title": f"Auspice visualization of TreeTime (v{treetime_version}) analysis",
"build_url": "https://github.com/neherlab/treetime",
"last_updated": datetime.now().strftime("%Y-%m-%d"),
"treetime_version": treetime_version,
"genome_annotations": {
"nuc":{"start":1, "end":int(tt.data.full_length), "type":"source", "strand":"+:"}
},
"panels":["tree", "entropy"],
"colorings": [
{
"title": "Date",
"type": "continuous",
"key": "num_date",
},
{
"title": "Genotype",
"type": "categorical",
"key": "gt",
},
{
"title": "Excluded",
"type": "categorical",
"key": "bad_branch"
},
{
"title": "Branch Support",
"type": "continuous",
"key": "confidence"
}
],
"display_defaults": {"color_by":"bad_branch"},
"filters": ["bad_branch"]
}
def node_to_json(n, pdiv=0.0):
j = {"name":n.name, "node_attrs":{}, "branch_attrs":{}}
if n.clades:
j["children"] = []
if timetree:
j["node_attrs"]["num_date"] = {"value":float(n.numdate)}
if confidence:
conf = tt.get_max_posterior_region(n, fraction=0.9)
j["node_attrs"]["num_date"]["confidence"] = (float(conf[0]), float(conf[1]))
j["node_attrs"]["div"] = float(pdiv + n.mutation_length)
j["node_attrs"]["bad_branch"] = {"value": "Yes" if n.bad_branch else "No"}
if seq_info: # only add mutations to the json if run with sequence data (fasta or vcf)
j["branch_attrs"]["mutations"] = {"nuc": [f"{a}{pos+1}{d}" for a,pos,d in n.mutations if d in "ACGT-"]}
# generate bootstrap confidence substitute via the negative exponential of the number of mutations
# this is the bootstrap confidence for iid mutations (only ACGT mutations)
j["node_attrs"]["confidence"] = {"value":round(1-np.exp(-len([pos for a,pos,d in n.mutations if d in "ACGT"])),3)
if not n.is_terminal() else 1.0}
return j
# create the tree data structure from the Biopython tree
tree = node_to_json(tt.tree.root, 0.0)
# dictionary to look up nodes by name
node_lookup = {tt.tree.root.name: tree}
for n in tt.tree.get_nonterminals():
n_json = node_lookup[n.name]
for c in n.clades:
# generate node jsons for all children and attach them the to parent
n_json["children"].append(node_to_json(c, n_json["node_attrs"]["div"]))
node_lookup[c.name] = n_json["children"][-1]
return {"meta":meta, "tree":tree}
|