File: clock_filter_methods.py

package info (click to toggle)
python-treetime 0.11.4-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 21,316 kB
  • sloc: python: 8,437; sh: 124; makefile: 49
file content (195 lines) | stat: -rw-r--r-- 8,824 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
import pandas as pd

def residual_filter(tt, n_iqd):
    terminals = tt.tree.get_terminals()
    clock_rate = tt.clock_model['slope']
    icpt = tt.clock_model['intercept']
    res = {}
    for node in terminals:
        if hasattr(node, 'raw_date_constraint') and  (node.raw_date_constraint is not None):
            res[node] = node.dist2root - clock_rate*np.mean(node.raw_date_constraint) - icpt

    residuals = np.array(list(res.values()))
    iqd = np.percentile(residuals,75) - np.percentile(residuals,25)
    outliers = {}
    for node,r in res.items():
        if abs(r)>n_iqd*iqd and node.up.up is not None:
            node.bad_branch=True
            outliers[node.name] = {'tau':(node.dist2root - icpt)/clock_rate,  'avg_date': np.mean(node.raw_date_constraint),
                                'exact_date': node.raw_date_constraint if type(node) is float else None,
                                'residual': r/iqd}
        else:
            node.bad_branch=False

    tt.outliers=None
    if len(outliers):
        outlier_df = pd.DataFrame(outliers).T.loc[:,['avg_date', 'tau', 'residual']]\
                                .rename(columns={'avg_date':'given_date', 'tau':'apparent_date'})
        tt.logger("Clock_filter.residual_filter marked the following outliers:", 2, warn=True)
        if tt.verbose>=2:
            print(outlier_df)
        tt.outliers = outlier_df
    return len(outliers)

def local_filter(tt, z_score_threshold):
    tt.logger(f"TreeTime.ClockFilter: starting local_outlier_detection", 2)

    node_info = collect_node_info(tt)

    node_info, z_scale = calculate_node_timings(tt, node_info)
    tt.logger(f"TreeTime.ClockFilter: z-scale {z_scale:1.2f}", 2)

    outliers = flag_outliers(tt, node_info, z_score_threshold, z_scale)

    for n in tt.tree.get_terminals():
        if n.name in outliers:
            n.bad_branch = True

    tt.outliers=None
    if len(outliers):
        outlier_df = pd.DataFrame(outliers).T.loc[:,['avg_date', 'tau', 'z', 'diagnosis']]\
                                .rename(columns={'avg_date':'given_date', 'tau':'apparent_date', 'z':'z-score'})
        tt.logger("Clock_filter.local_filter marked the following outliers", 2, warn=True)
        if tt.verbose>=2:
            print(outlier_df)
        tt.outliers = outlier_df
    return len(outliers)


def flag_outliers(tt, node_info, z_score_threshold, z_scale):
    def add_outlier_info(z, n, n_info, parent_tau, mu):
        n_info['z'] = z
        diagnosis=''
        # muts = n_info["nmuts"] if n.is_terminal() else 0.0
        # parent_tau = node_info[n.up.name]['tau'] if n.is_terminal() else n_info['tau']
        if z<0:
            if np.abs(n_info['avg_date']-parent_tau) > n_info["nmuts"]/mu:
                diagnosis='date_too_early'
            else:
                diagnosis = 'excess_mutations'
        else:
            diagnosis = 'date_too_late'
        n_info['diagnosis'] = diagnosis
        return n_info

    outliers = {}
    mu = tt.clock_model['slope']*tt.data.full_length
    for n in tt.tree.get_terminals():
        if n.up.up is None:
            continue # do not label children of the root as bad -- typically a problem with root choice that will be fixed anyway
        n_info = node_info[n.name]
        parent_tau = node_info[n.up.name]['tau']
        if n_info['exact_date']:
            z = (n_info['avg_date'] - n_info['tau'])/z_scale
            if np.abs(z) > z_score_threshold:
                outliers[n.name] = add_outlier_info(z, n, n_info, parent_tau, mu)
        elif n.raw_date_constraint and len(n.raw_date_constraint):
            zs = [(n_info['tau'] - x)/z_scale for x in n.raw_date_constraint]
            if zs[0]*zs[1]>0 and np.min(np.abs(zs))>z_score_threshold:
                outliers[n.name] = add_outlier_info(zs[0] if np.abs(zs[0])<np.abs(zs[1]) else zs[1],
                                                    n, n_info, parent_tau, mu)

    return outliers

def calculate_node_timings(tt, node_info, eps=0.2):
    mu = tt.clock_model['slope']*tt.data.full_length
    sigma_sq = (3/mu)**2
    tt.logger(f"Clockfilter.calculate_node_timings: mu={mu:1.3e}/y, sigma={3/mu:1.3e}y", 2)
    for n in tt.tree.find_clades(order='postorder'):
        p = node_info[n.name]
        if not p['exact_date'] or p['skip']:
            continue

        if n.is_terminal():
            prefactor = (p["observations"]/sigma_sq + mu**2/(p["nmuts"]+eps))
            p["a"] = (p["avg_date"]/sigma_sq + mu*p["nmuts"]/(p["nmuts"]+eps))/prefactor
        else:
            children = [node_info[c.name] for c in n if (not node_info[c.name]['skip']) and node_info[c.name]['exact_date']]
            if n==tt.tree.root:
                tmp_children_1 = mu*np.sum([(mu*c["a"]-c["nmuts"])/(eps+c["nmuts"]) for c in children])
                tmp_children_2 = mu**2*np.sum([(1-c["b"])/(eps+c["nmuts"]) for c in children])
                prefactor = (p["observations"]/sigma_sq + tmp_children_2)
                p["a"] = (p["observations"]*p["avg_date"]/sigma_sq + tmp_children_1)/prefactor
            else:
                tmp_children_1 = mu*np.sum([(mu*c["a"]-c["nmuts"])/(eps+c["nmuts"]) for c in children])
                tmp_children_2 = mu**2*np.sum([(1-c["b"])/(eps+c["nmuts"]) for c in children])
                prefactor = (p["observations"]/sigma_sq + mu**2/(p["nmuts"]+eps) + tmp_children_2)
                p["a"] = (p["observations"]*p["avg_date"]/sigma_sq + mu*p["nmuts"]/(p["nmuts"]+eps)+tmp_children_1)/prefactor
        p["b"] = mu**2/(p["nmuts"]+eps)/prefactor

    node_info[tt.tree.root.name]["tau"] = node_info[tt.tree.root.name]["a"]

    ## need to deal with tips without exact dates below.
    dev = []
    for n in tt.tree.get_nonterminals(order='preorder'):
        p = node_info[n.name]
        for c in n:
            c_info = node_info[c.name]
            if c_info['skip']:
                c_info['tau']=p['tau']
            else:
                if c_info['exact_date']:
                    c_info["tau"] = c_info["a"] + c_info["b"]*p["tau"]
                else:
                    c_info["tau"] = p["tau"] + c_info['nmuts']/mu
            if c.is_terminal() and c_info['exact_date']:
                dev.append(c_info['avg_date']-c_info['tau'])

    return node_info, np.std(dev)


def collect_node_info(tt, percentile_for_exact_date=90):
    node_info = {}
    aln = tt.aln or False
    if aln and (not tt.sequence_reconstruction):
        tt.infer_ancestral_sequences(infer_gtr=False)
    L = tt.data.full_length

    date_uncertainty = [np.abs(n.raw_date_constraint[1]-n.raw_date_constraint[0])
                            if type(n.raw_date_constraint)!=float else 0.0
                        for n in tt.tree.get_terminals()
                            if n.raw_date_constraint is not None]
    from scipy.stats import scoreatpercentile
    uncertainty_cutoff = scoreatpercentile(date_uncertainty, percentile_for_exact_date)*1.01

    for n in tt.tree.get_nonterminals(order='postorder'):
        parent = {"dates": [], "tips": {}, "skip":False}
        exact_dates = 0
        for c in n:
            if c.is_terminal():
                child = {'skip':False}
                child["nmuts"] = len([m for m in c.mutations if m[-1] in 'ACGT']) if aln \
                                      else np.round(c.branch_length*L)
                if c.raw_date_constraint is None:
                    child['exact_date'] = False
                elif type(c.raw_date_constraint)==float:
                    child['exact_date'] = True
                else:
                    child['exact_date'] = np.abs(c.raw_date_constraint[1]-c.raw_date_constraint[0])<=uncertainty_cutoff

                if child['exact_date']:
                    exact_dates += 1
                    if child["nmuts"]==0:
                        child['skip'] = True
                        parent["tips"][c.name]={'date': np.mean(c.raw_date_constraint),
                                                'exact_date':child['exact_date']}
                    else:
                        child['skip'] = False
                        child['observations'] = 1
                if c.raw_date_constraint is not None:
                    child["avg_date"] = np.mean(c.raw_date_constraint)
                node_info[c.name] = child
            else:
                if node_info[c.name]['exact_date']:
                    exact_dates += 1

        parent['exact_date'] = exact_dates>0

        parent["nmuts"] = len([m for m in n.mutations if m[-1] in 'ACGT']) if aln else np.round(n.branch_length*L)
        d = [v['date'] for v in parent['tips'].values() if v['exact_date']]
        parent["observations"] = len(d)
        parent["avg_date"] = np.mean(d) if len(d) else 0.0
        node_info[n.name] = parent

    return node_info