1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
|
import os,sys
import datetime
import pandas as pd
import numpy as np
from . import TreeTimeError, MissingDataError
class DateConversion(object):
"""
Small container class to store parameters to convert between branch length
as it is used in ML computations and the dates of the nodes.
It is assumed that the conversion formula is 'length = k*date + b'
"""
def __init__(self):
self.clock_rate = 0
self.intercept = 0
self.chisq = 0
self.r_val = 0
self.cov = None
self.sigma = 0
self.valid_confidence = False
def __str__(self):
if self.cov is not None and self.valid_confidence:
dslope = np.sqrt(self.cov[0,0])
outstr = ('Root-Tip-Regression:\n --rate:\t%1.3e +/- %1.2e (one std-dev)\n --chi^2:\t%1.2f\n --r^2: \t%1.2f\n'
%(self.clock_rate, dslope, self.chisq**2, self.r_val**2))
else:
outstr = ('Root-Tip-Regression:\n --rate:\t%1.3e\n --r^2: \t%1.2f\n'
%(self.clock_rate, self.r_val**2))
return outstr
@classmethod
def from_regression(cls, clock_model):
"""
Create the conversion object automatically from the tree
Parameters
----------
clock_model : dict
dictionary as returned from TreeRegression with fields intercept and slope
"""
dc = cls()
dc.clock_rate = clock_model['slope']
dc.intercept = clock_model['intercept']
dc.chisq = clock_model['chisq'] if 'chisq' in clock_model else None
dc.valid_confidence = clock_model['valid_confidence'] if 'valid_confidence' in clock_model else False
if 'cov' in clock_model and dc.valid_confidence:
dc.cov = clock_model['cov']
dc.r_val = clock_model['r_val']
return dc
def get_branch_len(self, date1, date2):
"""
Compute branch length given the dates of the two nodes.
Parameters
-----------
date1 : int
date of the first node (days before present)
date2 : int
date of the second node (days before present)
Returns:
--------
branch length : double
Branch length, assuming that the dependence
between the node date and the node depth in the the tree is linear.
"""
return abs(date1 - date2) * self.clock_rate
def get_time_before_present(self, numdate):
"""
Convert the numeric date to the branch-len scale
"""
return (numeric_date() - numdate) * abs(self.clock_rate)
def to_years(self, abs_t):
"""
Convert the time before present measured in branch length units to years
"""
return abs_t / abs(self.clock_rate)
def to_numdate(self, tbp):
"""
Convert time before present measured in clock rate units to numeric calendar dates
"""
return numeric_date() - self.to_years(tbp)
def numdate_from_dist2root(self, d2r):
"""
estimate the numerical date based on the distance to root.
-> crude dating of internal nodes
"""
return (d2r-self.intercept)/self.clock_rate
def clock_deviation(self, numdate, d2r):
"""
calculate the deviatio of the
"""
return (self.numdate_from_dist2root(d2r) - numdate)*self.clock_rate
def min_interp(interp_object):
"""
Find the global minimum of a function represented as an interpolation object.
"""
try:
return interp_object.x[interp_object(interp_object.x).argmin()]
except Exception as e:
s = "Cannot find minimum of the interpolation object" + str(interp_object.x) + \
"Minimal x: " + str(interp_object.x.min()) + "Maximal x: " + str(interp_object.x.max())
raise e
def median_interp(interp_object):
"""
Find the median of the function represented as an interpolation object.
"""
new_grid = np.sort(np.concatenate([interp_object.x[:-1] + 0.1*ii*np.diff(interp_object.x)
for ii in range(10)]).flatten())
tmp_prop = np.exp(-(interp_object(new_grid)-interp_object.y.min()))
tmp_cumsum = np.cumsum(0.5*(tmp_prop[1:]+tmp_prop[:-1])*np.diff(new_grid))
median_index = min(len(tmp_cumsum)-3, max(2,np.searchsorted(tmp_cumsum, tmp_cumsum[-1]*0.5)+1))
return new_grid[median_index]
def numeric_date(dt=None):
"""
Convert datetime object to the numeric date.
The numeric date format is YYYY.F, where F is the fraction of the year passed
Parameters
----------
dt: datetime.datetime, None
date of to be converted. if None, assume today
"""
from calendar import isleap
if dt is None:
dt = datetime.datetime.now()
days_in_year = 366 if isleap(dt.year) else 365
try:
res = dt.year + (dt.timetuple().tm_yday-0.5) / days_in_year
except:
res = None
return res
def datetime_from_numeric(numdate):
"""convert a numeric decimal date to a python datetime object
Note that this only works for AD dates since the range of datetime objects
is restricted to year>1.
Parameters
----------
numdate : float
numeric date as in 2018.23
Returns
-------
datetime.datetime
datetime object
"""
from calendar import isleap
days_in_year = 366 if isleap(int(numdate)) else 365
# add a small number of the time elapsed in a year to avoid
# unexpected behavior for values 1/365, 2/365, etc
days_elapsed = int(((numdate%1)+1e-10)*days_in_year)
date = datetime.datetime(int(numdate),1,1) + datetime.timedelta(days=days_elapsed)
return date
def datestring_from_numeric(numdate):
"""convert a numerical date to a formated date string YYYY-MM-DD
Parameters
----------
numdate : float
numeric date as in 2018.23
Returns
-------
str
date string YYYY-MM-DD
"""
try:
return datetime.datetime.strftime(datetime_from_numeric(numdate), "%Y-%m-%d")
except:
year = int(np.floor(numdate))
dt = datetime_from_numeric(1900+(numdate%1))
return "%04d-%02d-%02d"%(year, dt.month, dt.day)
def parse_dates(date_file, name_col=None, date_col=None):
"""
parse dates from the arguments and return a dictionary mapping
taxon names to numerical dates.
Parameters
----------
date_file : str
name of csv/tsv file to parse meta data from
name_col : str, optional
name of column containing taxon names. If None, will use
first column that contains 'name', 'strain', 'accession'
date_col : str, optional
name of column containing taxon names. If None, will use
a column that contains the substring 'date'
Returns
-------
dict[str, float | list[float]]
dictionary mapping taxon names to numeric dates (float year)
It will first try to parse date column strings as float, then as min/max
pair of floats (e.g. '[2018.2:2018.4]'), then as date strings using
pandas.to_datetime and finally as ambiguous date such as 2018-05-XX
Numeric date values are returned as float or a list of floats with
2 elements [min, max] if the date is ambiguous.
"""
print("\nAttempting to parse dates...")
dates = {}
if not os.path.isfile(date_file):
print("\n\tERROR: file %s does not exist, exiting..."%date_file)
return dates
# separator for the csv/tsv file. If csv, we'll strip extra whitespace around ','
full_sep = '\t' if date_file.endswith('.tsv') else r'\s*,\s*'
try:
# read the metadata file into pandas dataframe.
df = pd.read_csv(date_file, sep=full_sep, engine='python', dtype='str', index_col=False)
# check the metadata has strain names in the first column
# look for the column containing sampling dates
# We assume that the dates might be given either in human-readable format
# (e.g. ISO dates), or be already converted to the numeric format.
potential_date_columns = []
potential_numdate_columns = []
potential_index_columns = []
# Scan the dataframe columns and find ones which likely to store the
# dates
for ci,col in enumerate(df.columns):
d = df.iloc[0,ci]
# strip quotation marks
if type(d)==str and d[0] in ['"', "'"] and d[-1] in ['"', "'"]:
for i,tmp_d in enumerate(df.iloc[:,ci]):
df.iloc[i,ci] = tmp_d.strip(d[0])
if 'date' in col.lower():
potential_date_columns.append((ci, col))
if any([x==col.lower() for x in ['name', 'strain', 'accession']]):
potential_index_columns.append((ci, col))
if date_col and date_col not in df.columns:
raise MissingDataError("ERROR: specified column for dates does not exist. \n\tAvailable columns are: "\
+", ".join(df.columns)+"\n\tYou specified '%s'"%date_col)
if name_col and name_col not in df.columns:
raise MissingDataError("ERROR: specified column for the taxon name does not exist. \n\tAvailable columns are: "\
+", ".join(df.columns)+"\n\tYou specified '%s'"%name_col)
dates = {}
# if a potential numeric date column was found, use it
# (use the first, if there are more than one)
if not (len(potential_index_columns) or name_col):
raise MissingDataError("ERROR: Cannot read metadata: need at least one column that contains the taxon labels."
" Looking for the first column that contains 'name', 'strain', or 'accession' in the header.")
else:
# use the first column that is either 'name', 'strain', 'accession'
if name_col is None:
index_col = sorted(potential_index_columns)[0][1]
else:
index_col = name_col
print("\tUsing column '%s' as name. This needs match the taxon names in the tree!!"%index_col)
if len(potential_date_columns)>=1 or date_col:
#try to parse the csv file with dates in the idx column:
if date_col is None:
date_col = potential_date_columns[0][1]
print("\tUsing column '%s' as date."%date_col)
for ri, row in df.iterrows():
date_str = row.loc[date_col]
k = row.loc[index_col]
# try parsing as a float first
try:
if date_str:
dates[k] = float(date_str)
else:
dates[k] = None
continue
except ValueError:
# try whether the date string can be parsed as [2002.2:2004.3]
# to indicate general ambiguous ranges
if date_str[0]=='[' and date_str[-1]==']' and len(date_str[1:-1].split(':'))==2:
try:
dates[k] = [float(x) for x in date_str[1:-1].split(':')]
continue
except ValueError:
pass
# try date format parsing 2017-08-12
try:
tmp_date = pd.to_datetime(date_str)
dates[k] = numeric_date(tmp_date)
except ValueError: # try ambiguous date format parsing 2017-XX-XX
lower, upper = ambiguous_date_to_date_range(date_str, '%Y-%m-%d')
if lower is not None:
dates[k] = [numeric_date(x) for x in [lower, upper]]
else:
raise MissingDataError("ERROR: Metadata file has no column which looks like a sampling date!")
if all(v is None for v in dates.values()):
raise MissingDataError("ERROR: Cannot parse dates correctly! Check date format.")
return dates
except TreeTimeError as err:
raise err
except:
raise
def ambiguous_date_to_date_range(mydate, fmt="%Y-%m-%d", min_max_year=None):
"""parse an abiguous date such as 2017-XX-XX to [2017,2017.999]
Parameters
----------
mydate : str
date string to be parsed
fmt : str
format descriptor. default is %Y-%m-%d
min_max_year : None, optional
if date is completely unknown, use this as bounds.
Returns
-------
tuple
upper and lower bounds on the date. return (None, None) if errors
"""
sep = fmt.split('%')[1][-1]
min_date, max_date = {}, {}
today = datetime.date.today()
for val, field in zip(mydate.split(sep), fmt.split(sep+'%')):
f = 'year' if 'y' in field.lower() else ('day' if 'd' in field.lower() else 'month')
if 'XX' in val:
if f=='year':
if min_max_year:
min_date[f]=min_max_year[0]
if len(min_max_year)>1:
max_date[f]=min_max_year[1]
elif len(min_max_year)==1:
max_date[f]=4000 #will be replaced by 'today' below.
else:
return None, None
elif f=='month':
min_date[f]=1
max_date[f]=12
elif f=='day':
min_date[f]=1
max_date[f]=31
else:
try:
min_date[f]=int(val)
max_date[f]=int(val)
except ValueError:
print("Can't parse date string: "+mydate, file=sys.stderr)
return None, None
max_date['day'] = min(max_date['day'], 31 if max_date['month'] in [1,3,5,7,8,10,12]
else 28 if max_date['month']==2 else 30)
lower_bound = datetime.date(year=min_date['year'], month=min_date['month'], day=min_date['day'])
upper_bound = datetime.date(year=max_date['year'], month=max_date['month'], day=max_date['day'])
return (lower_bound, upper_bound if upper_bound<today else today)
def tree_layout(tree):
leaf_count=0
for ni,node in enumerate(tree.find_clades(order="postorder")):
if node.is_terminal():
leaf_count+=1
node.ypos=leaf_count
else:
tmp = np.array([c.ypos for c in node])
node.ypos=0.5*(np.max(tmp) + np.min(tmp))
def tree_inference(aln_fname, tree_fname, tmp_dir=None,
methods = None, **kwargs):
import os,shutil
from Bio import Phylo
if methods is None:
methods = ['iqtree', 'fasttree', 'raxml']
if not os.path.isfile(aln_fname):
print("alignment file does not exist")
cwd = os.getcwd()
if tmp_dir:
if not os.path.isdir(tmp_dir):
try:
os.makedirs(tmp_dir)
except OSError as e:
print("Cannot create run_dir",e)
aln_fname_base = os.path.basename(aln_fname)
shutil.copyfile(aln_fname,os.path.join(tmp_dir, aln_fname_base))
aln_fname = aln_fname_base
os.chdir(tmp_dir)
for method in methods:
T = None
try:
if method.lower()=='iqtree':
T = build_newick_iqtree(aln_fname)
elif method.lower()=='fasttree':
T = build_newick_fasttree(aln_fname, nuc=True)
elif method.lower()=='raxml':
T = build_newick_raxml(aln_fname)
else:
print("Method not supported",method)
if T:
break
except:
continue
os.chdir(cwd)
if T is None:
msg = f"tree building failed. tried '{','.join(methods)}', but none worked"
print(msg)
raise(TreeTimeError(msg))
else:
Phylo.write(T, tree_fname, 'newick')
def build_newick_fasttree(aln_fname, nuc=True):
import os
from Bio import Phylo
print("Building tree with fasttree")
tree_cmd = ["fasttree"]
if nuc: tree_cmd.append("-nt")
tree_cmd.extend([aln_fname,"1>","tmp.nwk", "2>", "fasttree_stderr"])
os.system(" ".join(tree_cmd))
return Phylo.read("tmp.nwk", 'newick')
def build_newick_raxml(aln_fname, nthreads=2, raxml_bin="raxml", **kwargs):
import shutil,os
print("Building tree with raxml")
from Bio import Phylo, AlignIO
AlignIO.write(AlignIO.read(aln_fname, 'fasta'),"temp.phyx", "phylip-relaxed")
cmd = raxml_bin + " -f d -T " + str(nthreads) + " -m GTRCAT -c 25 -p 235813 -n tre -s temp.phyx"
os.system(cmd)
return Phylo.read('RAxML_bestTree.tre', "newick")
def build_newick_iqtree(aln_fname, nthreads=2, iqtree_bin="iqtree",
iqmodel="HKY", **kwargs):
import os
from Bio import Phylo, AlignIO
print("Building tree with iqtree")
aln = None
for fmt in ['fasta', 'phylip-relaxed']:
try:
aln = AlignIO.read(aln_fname, fmt)
break
except:
continue
if aln is None:
raise ValueError("failed to read alignment for tree building")
aln_file = "temp.fasta"
seq_names = set()
for s in aln:
tmp = s.id
for c, sub in zip('/|()', 'VWXY'):
tmp = tmp.replace(c, '_%s_%s_'%(sub,sub))
if tmp in seq_names:
print("A sequence with name {} already exists, skipping....".format(s.id))
continue
s.id = tmp
s.name = s.id
s.description = ''
seq_names.add(s.id)
AlignIO.write(aln, aln_file, 'fasta')
fast_opts = [
"-ninit", "2",
"-n", "2",
"-me", "0.05"
]
call = ["iqtree"] + fast_opts +["-nt", str(nthreads), "-s", aln_file, "-m", iqmodel,
">", "iqtree.log"]
os.system(" ".join(call))
T = Phylo.read(aln_file+".treefile", 'newick')
for n in T.get_terminals():
tmp = n.name
for c, sub in zip('/|()', 'VWXY'):
tmp = tmp.replace('_%s_%s_'%(sub,sub), c)
n.name = tmp
return T
def clip(a, min_val, max_val):
return np.maximum(min_val, np.minimum(a, max_val))
if __name__ == '__main__':
pass
|