1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
|
# -*- coding: utf-8 -*-
from copy import deepcopy
import json
import logging
import os
import shutil
from typing import Any, List, Tuple, Type, Union, Optional
import zipfile
import nibabel as nib
from nibabel.affines import voxel_sizes
from nibabel.nifti1 import Nifti1Header, Nifti1Image
from nibabel.orientations import aff2axcodes
from nibabel.streamlines.array_sequence import ArraySequence
from nibabel.streamlines.trk import TrkFile
from nibabel.streamlines.tractogram import Tractogram, LazyTractogram
import numpy as np
from trx.io import get_trx_tmp_dir
from trx.utils import (append_generator_to_dict,
close_or_delete_mmap,
convert_data_dict_to_tractogram,
get_reference_info_wrapper)
try:
import dipy
dipy_available = True
except ImportError:
dipy_available = False
def _append_last_offsets(nib_offsets: np.ndarray, nb_vertices: int) -> np.ndarray:
"""Appends the last element of offsets from header information
Keyword arguments:
nib_offsets -- np.ndarray
Array of offsets with the last element being the start of the last
streamline (nibabel convention)
nb_vertices -- int
Total number of vertices in the streamlines
Returns:
Offsets -- np.ndarray (VTK convention)
"""
def is_sorted(a): return np.all(a[:-1] <= a[1:])
if not is_sorted(nib_offsets):
raise ValueError('Offsets must be sorted values.')
return np.append(nib_offsets, nb_vertices).astype(nib_offsets.dtype)
def _generate_filename_from_data(arr: np.ndarray, filename: str) -> str:
"""Determines the data type from array data and generates the appropriate
filename
Keyword arguments:
arr -- a NumPy array (1-2D, otherwise ValueError raised)
filename -- the original filename
Returns:
An updated filename
"""
base, ext = os.path.splitext(filename)
if ext:
logging.warning("Will overwrite provided extension if needed.")
dtype = arr.dtype
dtype = "bit" if dtype == bool else dtype.name
if arr.ndim == 1:
new_filename = "{}.{}".format(base, dtype)
elif arr.ndim == 2:
dim = arr.shape[-1]
if dim == 1:
new_filename = "{}.{}".format(base, dtype)
else:
new_filename = "{}.{}.{}".format(base, arr.shape[-1], dtype)
else:
raise ValueError("Invalid dimensionality.")
return new_filename
def _split_ext_with_dimensionality(filename: str) -> Tuple[str, int, str]:
"""Takes a filename and splits it into its components
Keyword arguments:
filename -- Input filename
Returns:
tuple of strings (basename, dimension, extension)
"""
basename = os.path.basename(filename)
split = basename.split(".")
if len(split) != 2 and len(split) != 3:
raise ValueError("Invalid filename.")
basename = split[0]
ext = ".{}".format(split[-1])
dim = 1 if len(split) == 2 else split[1]
_is_dtype_valid(ext)
return basename, int(dim), ext
def _compute_lengths(offsets: np.ndarray) -> np.ndarray:
"""Compute lengths from offsets
Keyword arguments:
offsets -- An np.ndarray of offsets
Returns:
lengths -- An np.ndarray of lengths
"""
if len(offsets) > 0:
last_elem_pos = _dichotomic_search(offsets)
lengths = np.ediff1d(offsets)
if len(lengths) > last_elem_pos:
lengths[last_elem_pos] = 0
else:
lengths = np.array([0])
return lengths.astype(np.uint32)
def _is_dtype_valid(ext: str) -> bool:
"""Verifies that filename extension is a valid datatype
Keyword arguments:
ext -- filename extension
Returns:
boolean representing if provided datatype is valid
"""
if ext.replace(".", "") == "bit":
return True
try:
isinstance(np.dtype(ext.replace(".", "")), np.dtype)
return True
except TypeError:
return False
def _dichotomic_search(
x: np.ndarray, l_bound: Optional[int] = None, r_bound: Optional[int] = None
) -> int:
"""Find where data of a contiguous array is actually ending
Keyword arguments:
x -- np.ndarray of values
l_bound -- lower bound index for search
r_bound -- upper bound index for search
Returns:
index at which array value is 0 (if possible), otherwise returns -1"""
if l_bound is None and r_bound is None:
l_bound = 0
r_bound = len(x) - 1
if l_bound == r_bound:
val = l_bound if x[l_bound] != 0 else -1
return val
mid_bound = (l_bound + r_bound + 1) // 2
if x[mid_bound] == 0:
return _dichotomic_search(x, l_bound, mid_bound - 1)
else:
return _dichotomic_search(x, mid_bound, r_bound)
def _create_memmap(
filename: str,
mode: str = "r",
shape: Tuple = (1,),
dtype: np.dtype = np.float32,
offset: int = 0,
order: str = "C",
) -> np.ndarray:
"""Wrapper to support empty array as memmaps
Keyword arguments:
filename -- filename where the empty memmap should be created
mode -- file open mode (see: np.memmap for options)
shape -- shape of memmapped np.ndarray
dtype -- datatype of memmapped np.ndarray
offset -- offset of the data within the file
order -- data representation on disk (C or Fortran)
Returns:
mmapped np.ndarray or a zero-filled Numpy array if array has a shape of 0
in the first dimension
"""
if np.dtype(dtype) == bool:
filename = filename.replace(".bool", ".bit")
if shape[0]:
return np.memmap(
filename, mode=mode, offset=offset, shape=shape, dtype=dtype,
order=order
)
else:
if not os.path.isfile(filename):
f = open(filename, "wb")
f.close()
return np.zeros(shape, dtype=dtype)
def load(input_obj: str, check_dpg: bool = True) -> Type["TrxFile"]:
"""Load a TrxFile (compressed or not)
Keyword arguments:
input_obj -- A directory name or filepath to the trx data
check_dpg -- Boolean denoting if group metadata should be checked
Returns:
TrxFile object representing the read data
"""
# TODO Check if 0 streamlines, then 0 vertices is expected (vice-versa)
# TODO 4x4 affine matrices should contains values (no all-zeros)
# TODO 3x1 dimensions array should contains values at each position (int)
if os.path.isfile(input_obj):
was_compressed = False
with zipfile.ZipFile(input_obj, "r") as zf:
for info in zf.infolist():
if info.compress_type != 0:
was_compressed = True
break
if was_compressed:
with zipfile.ZipFile(input_obj, "r") as zf:
tmp_dir = get_trx_tmp_dir()
zf.extractall(tmp_dir.name)
trx = load_from_directory(tmp_dir.name)
trx._uncompressed_folder_handle = tmp_dir
logging.info(
"File was compressed, call the close() function before "
"exiting."
)
else:
trx = load_from_zip(input_obj)
elif os.path.isdir(input_obj):
trx = load_from_directory(input_obj)
else:
raise ValueError("File/Folder does not exist")
# Example of robust check for metadata
if check_dpg:
for dpg in trx.data_per_group.keys():
if dpg not in trx.groups.keys():
raise ValueError(
"An undeclared group ({}) has " "data_per_group.".format(
dpg)
)
return trx
def load_from_zip(filename: str) -> Type["TrxFile"]:
"""Load a TrxFile from a single zipfile. Note: does not work with
compressed zipfiles
Keyword arguments:
filename -- path of the zipped TrxFile
Returns:
TrxFile representing the read data
"""
with zipfile.ZipFile(filename, mode="r") as zf:
with zf.open("header.json") as zf_header:
header = json.load(zf_header)
header["VOXEL_TO_RASMM"] = np.reshape(
header["VOXEL_TO_RASMM"], (4, 4)
).astype(np.float32)
header["DIMENSIONS"] = np.array(
header["DIMENSIONS"], dtype=np.uint16)
files_pointer_size = {}
for zip_info in zf.filelist:
elem_filename = zip_info.filename
_, ext = os.path.splitext(elem_filename)
if ext == ".json" or zip_info.is_dir():
continue
if not _is_dtype_valid(ext):
continue
raise ValueError(
"The dtype {} is not supported".format(elem_filename))
if ext == ".bit":
ext = ".bool"
mem_adress = zip_info.header_offset + len(zip_info.FileHeader())
dtype_size = np.dtype(ext[1:]).itemsize
size = zip_info.file_size / dtype_size
if len(zip_info.extra):
mem_adress -= len(zip_info.extra)
if size.is_integer():
files_pointer_size[elem_filename] = mem_adress, int(size)
else:
raise ValueError("Wrong size or datatype")
return TrxFile._create_trx_from_pointer(
header, files_pointer_size, root_zip=filename
)
def load_from_directory(directory: str) -> Type["TrxFile"]:
"""Load a TrxFile from a folder containing memmaps
Keyword arguments:
filename -- path of the zipped TrxFile
Returns:
TrxFile representing the read data
"""
directory = os.path.abspath(directory)
with open(os.path.join(directory, "header.json")) as header:
header = json.load(header)
header["VOXEL_TO_RASMM"] = np.reshape(header["VOXEL_TO_RASMM"],
(4, 4)).astype(np.float32)
header["DIMENSIONS"] = np.array(header["DIMENSIONS"], dtype=np.uint16)
files_pointer_size = {}
for root, dirs, files in os.walk(directory):
for name in files:
elem_filename = os.path.join(root, name)
_, ext = os.path.splitext(elem_filename)
if ext == ".json":
continue
if not _is_dtype_valid(ext):
raise ValueError(
"The dtype of {} is not supported".format(elem_filename)
)
if ext == ".bit":
ext = ".bool"
dtype_size = np.dtype(ext[1:]).itemsize
size = os.path.getsize(elem_filename) / dtype_size
if size.is_integer():
files_pointer_size[elem_filename] = 0, int(size)
elif os.path.getsize(elem_filename) == 1:
files_pointer_size[elem_filename] = 0, 0
else:
raise ValueError("Wrong size or datatype")
return TrxFile._create_trx_from_pointer(header, files_pointer_size,
root=directory)
def concatenate(
trx_list: List["TrxFile"],
delete_dpv: bool = False,
delete_dps: bool = False,
delete_groups: bool = False,
check_space_attributes: bool = True,
preallocation: bool = False,
) -> "TrxFile":
"""Concatenate multiple TrxFile together, support preallocation
Keyword arguments:
trx_list -- A list containing TrxFiles to concatenate
delete_dpv -- Delete dpv keys that do not exist in all the provided
TrxFiles
delete_dps -- Delete dps keys that do not exist in all the provided
TrxFile
delete_groups -- Delete all the groups that currently exist in the
TrxFiles
check_space_attributes -- Verify that dimensions and size of data are
similar between all the TrxFiles
preallocation -- Preallocated TrxFile has already been generated and
is the first element in trx_list
(Note: delete_groups must be set to True as well)
Returns:
TrxFile representing the concatenated data
"""
trx_list = [
curr_trx for curr_trx in trx_list if curr_trx.header["NB_STREAMLINES"] > 0
]
if len(trx_list) == 0:
logging.warning("Inputs of concatenation were empty.")
return TrxFile()
ref_trx = trx_list[0]
all_dps = []
all_dpv = []
for curr_trx in trx_list:
all_dps.extend(list(curr_trx.data_per_streamline.keys()))
all_dpv.extend(list(curr_trx.data_per_vertex.keys()))
all_dps, all_dpv = set(all_dps), set(all_dpv)
if check_space_attributes:
for curr_trx in trx_list[1:]:
if not np.allclose(
ref_trx.header["VOXEL_TO_RASMM"], curr_trx.header["VOXEL_TO_RASMM"]
) or not np.array_equal(
ref_trx.header["DIMENSIONS"], curr_trx.header["DIMENSIONS"]
):
raise ValueError("Wrong space attributes.")
if preallocation and not delete_groups:
raise ValueError(
"Groups are variables, cannot be handled with " "preallocation"
)
# Verifying the validity of fixed-size arrays, coherence between inputs
for curr_trx in trx_list:
for key in all_dpv:
if key not in ref_trx.data_per_vertex.keys() \
or key not in curr_trx.data_per_vertex.keys():
if not delete_dpv:
logging.debug(
"{} dpv key does not exist in all TrxFile.".format(key)
)
raise ValueError(
"TrxFile must be sharing identical dpv " "keys.")
elif (
ref_trx.data_per_vertex[key]._data.dtype
!= curr_trx.data_per_vertex[key]._data.dtype
):
logging.debug(
"{} dpv key is not declared with the same dtype "
"in all TrxFile.".format(key)
)
raise ValueError("Shared dpv key, has different dtype.")
for curr_trx in trx_list:
for key in all_dps:
if key not in ref_trx.data_per_streamline.keys() \
or key not in curr_trx.data_per_streamline.keys():
if not delete_dps:
logging.debug(
"{} dps key does not exist in all " "TrxFile.".format(
key)
)
raise ValueError(
"TrxFile must be sharing identical dps " "keys.")
elif (
ref_trx.data_per_streamline[key].dtype
!= curr_trx.data_per_streamline[key].dtype
):
logging.debug(
"{} dps key is not declared with the same dtype "
"in all TrxFile.".format(key)
)
raise ValueError("Shared dps key, has different dtype.")
all_groups_len = {}
all_groups_dtype = {}
# Variable-size arrays do not have to exist in all TrxFile
if not delete_groups:
for trx_1 in trx_list:
for group_key in trx_1.groups.keys():
# Concatenating groups together
if group_key in all_groups_len:
all_groups_len[group_key] += len(trx_1.groups[group_key])
else:
all_groups_len[group_key] = len(trx_1.groups[group_key])
if (
group_key in all_groups_dtype
and trx_1.groups[group_key].dtype != all_groups_dtype[group_key]
):
raise ValueError("Shared group key, has different dtype.")
else:
all_groups_dtype[group_key] = trx_1.groups[group_key].dtype
# Once the checks are done, actually concatenate
to_concat_list = trx_list[1:] if preallocation else trx_list
if not preallocation:
nb_vertices = 0
nb_streamlines = 0
for curr_trx in to_concat_list:
curr_strs_len, curr_pts_len = curr_trx._get_real_len()
nb_streamlines += curr_strs_len
nb_vertices += curr_pts_len
new_trx = TrxFile(
nb_vertices=nb_vertices, nb_streamlines=nb_streamlines,
init_as=ref_trx
)
if delete_dps:
new_trx.data_per_streamline = {}
if delete_dpv:
new_trx.data_per_vertex = {}
if delete_groups:
new_trx.groups = {}
tmp_dir = new_trx._uncompressed_folder_handle.name
# When memory is allocated on the spot, groups and data_per_group can
# be concatenated together
for group_key in all_groups_len.keys():
if not os.path.isdir(os.path.join(tmp_dir, "groups/")):
os.mkdir(os.path.join(tmp_dir, "groups/"))
dtype = all_groups_dtype[group_key]
group_filename = os.path.join(
tmp_dir, "groups/" "{}.{}".format(group_key, dtype.name)
)
group_len = all_groups_len[group_key]
new_trx.groups[group_key] = _create_memmap(
group_filename, mode="w+", shape=(group_len,), dtype=dtype
)
if delete_groups:
continue
pos = 0
count = 0
for curr_trx in trx_list:
curr_len = len(curr_trx.groups[group_key])
new_trx.groups[group_key][pos: pos + curr_len] = \
curr_trx.groups[group_key] + count
pos += curr_len
count += curr_trx.header["NB_STREAMLINES"]
strs_end, pts_end = 0, 0
else:
new_trx = ref_trx
strs_end, pts_end = new_trx._get_real_len()
for curr_trx in to_concat_list:
# Copy the TrxFile fixed-size info (the right chunk)
strs_end, pts_end = new_trx._copy_fixed_arrays_from(
curr_trx, strs_start=strs_end, pts_start=pts_end
)
return new_trx
def save(
trx: "TrxFile", filename: str, compression_standard: Any = zipfile.ZIP_STORED
) -> None:
"""Save a TrxFile (compressed or not)
Keyword arguments:
trx -- The TrxFile to save
filename -- The path to save the TrxFile to
compression_standard -- The compression standard to use, as defined by
the ZipFile library
"""
_, ext = os.path.splitext(filename)
if ext not in [".zip", ".trx", ""]:
raise ValueError("Unsupported extension.")
copy_trx = trx.deepcopy()
copy_trx.resize()
tmp_dir_name = copy_trx._uncompressed_folder_handle.name
if ext in [".zip", ".trx"]:
zip_from_folder(tmp_dir_name, filename, compression_standard)
else:
if os.path.isdir(filename):
shutil.rmtree(filename)
shutil.copytree(tmp_dir_name, filename)
copy_trx.close()
def zip_from_folder(
directory: str, filename: str, compression_standard: Any = zipfile.ZIP_STORED
) -> None:
"""Utils function to zip on-disk memmaps
Keyword arguments
directory -- The path to the on-disk memmap
filename -- The path where the zip file should be created
compression_standard -- The compression standard to use, as defined by
the ZipFile library
"""
with zipfile.ZipFile(filename, mode="w", compression=compression_standard) as zf:
for root, _, files in os.walk(directory):
for name in files:
curr_filename = os.path.join(root, name)
tmp_filename = curr_filename.replace(directory, "")[1:]
zf.write(curr_filename, tmp_filename)
class TrxFile:
"""Core class of the TrxFile"""
header: dict
streamlines: Type[ArraySequence]
groups: dict
data_per_streamline: dict
data_per_vertex: dict
data_per_group: dict
def __init__(
self,
nb_vertices: Optional[int] = None,
nb_streamlines: Optional[int] = None,
init_as: Optional[Type["TrxFile"]] = None,
reference: Union[
str,
dict,
Type[Nifti1Image],
Type[TrkFile],
Type[Nifti1Header],
None,
] = None,
) -> None:
"""Initialize an empty TrxFile, support preallocation
Keyword Arguments:
nb_vertices -- The number of vertices to use in the new TrxFile
nb_streamlines -- The number of streamlines in the new TrxFile
init_as -- A TrxFile to use as reference
reference -- A Nifti or Trk file/obj to use as reference
"""
if init_as is not None:
affine = init_as.header["VOXEL_TO_RASMM"]
dimensions = init_as.header["DIMENSIONS"]
elif reference is not None:
affine, dimensions, _, _ = get_reference_info_wrapper(reference)
else:
logging.debug(
"No reference provided, using blank space "
"attributes, please update them later."
)
affine = np.eye(4).astype(np.float32)
dimensions = np.array([1, 1, 1], dtype=np.uint16)
if nb_vertices is None and nb_streamlines is None:
if init_as is not None:
raise ValueError(
"Cant use init_as without declaring "
"nb_vertices AND nb_streamlines"
)
logging.debug("Intializing empty TrxFile.")
self.header = {}
# Using the new format default type
tmp_strs = ArraySequence()
tmp_strs._data = tmp_strs._data.astype(np.float32)
tmp_strs._offsets = tmp_strs._offsets.astype(np.uint32)
tmp_strs._lengths = tmp_strs._lengths.astype(np.uint32)
self.streamlines = tmp_strs
self.groups = {}
self.data_per_streamline = {}
self.data_per_vertex = {}
self.data_per_group = {}
self._uncompressed_folder_handle = None
nb_vertices = 0
nb_streamlines = 0
elif nb_vertices is not None and nb_streamlines is not None:
logging.debug(
"Preallocating TrxFile with size {} streamlines"
"and {} vertices.".format(nb_streamlines, nb_vertices)
)
trx = self._initialize_empty_trx(
nb_streamlines, nb_vertices, init_as=init_as
)
self.__dict__ = trx.__dict__
else:
raise ValueError(
"You must declare both nb_vertices AND " "NB_STREAMLINES")
self.header["VOXEL_TO_RASMM"] = affine
self.header["DIMENSIONS"] = dimensions
self.header["NB_VERTICES"] = nb_vertices
self.header["NB_STREAMLINES"] = nb_streamlines
self._copy_safe = True
def __str__(self) -> str:
"""Generate the string for printing"""
affine = np.array(self.header["VOXEL_TO_RASMM"], dtype=np.float32)
dimensions = np.array(self.header["DIMENSIONS"], dtype=np.uint16)
vox_sizes = np.array(voxel_sizes(affine), dtype=np.float32)
vox_order = "".join(aff2axcodes(affine))
text = "VOXEL_TO_RASMM: \n{}".format(
np.array2string(affine, formatter={
"float_kind": lambda x: "%.6f" % x})
)
text += "\nDIMENSIONS: {}".format(np.array2string(dimensions))
text += "\nVOX_SIZES: {}".format(
np.array2string(vox_sizes, formatter={
"float_kind": lambda x: "%.2f" % x})
)
text += "\nVOX_ORDER: {}".format(vox_order)
strs_size = self.header["NB_STREAMLINES"]
pts_size = self.header["NB_VERTICES"]
strs_len, pts_len = self._get_real_len()
if strs_size != strs_len or pts_size != pts_len:
text += "\nstreamline_size: {}".format(strs_size)
text += "\nvertex_size: {}".format(pts_size)
text += "\nstreamline_count: {}".format(strs_len)
text += "\nvertex_count: {}".format(pts_len)
text += "\ndata_per_vertex keys: {}".format(
list(self.data_per_vertex.keys()))
text += "\ndata_per_streamline keys: {}".format(
list(self.data_per_streamline.keys())
)
text += "\ngroups keys: {}".format(list(self.groups.keys()))
for group_key in self.groups.keys():
if group_key in self.data_per_group:
text += "\ndata_per_groups ({}) keys: {}".format(
group_key, list(self.data_per_group[group_key].keys())
)
text += "\ncopy_safe: {}".format(self._copy_safe)
return text
def __len__(self) -> int:
"""Define the length of the object"""
return len(self.streamlines)
def __getitem__(self, key) -> Any:
"""Slice all data in a consistent way"""
if isinstance(key, int):
if key < 0:
key += len(self)
key = [key]
elif isinstance(key, slice):
key = [ii for ii in range(*key.indices(len(self)))]
return self.select(key, keep_group=False)
def __deepcopy__(self) -> Type["TrxFile"]:
return self.deepcopy()
def deepcopy(self) -> Type["TrxFile"]:
"""Create a deepcopy of the TrxFile
Returns
A deepcopied TrxFile of the current TrxFile
"""
tmp_dir = get_trx_tmp_dir()
out_json = open(os.path.join(tmp_dir.name, "header.json"), "w")
tmp_header = deepcopy(self.header)
if not isinstance(tmp_header["VOXEL_TO_RASMM"], list):
tmp_header["VOXEL_TO_RASMM"] = tmp_header["VOXEL_TO_RASMM"].tolist()
if not isinstance(tmp_header["DIMENSIONS"], list):
tmp_header["DIMENSIONS"] = tmp_header["DIMENSIONS"].tolist()
# tofile() alway write in C-order
if not self._copy_safe:
to_dump = self.streamlines.copy()._data
tmp_header["NB_STREAMLINES"] = len(self.streamlines)
tmp_header["NB_VERTICES"] = len(to_dump)
else:
to_dump = self.streamlines._data
json.dump(tmp_header, out_json)
out_json.close()
positions_filename = _generate_filename_from_data(
to_dump, os.path.join(tmp_dir.name, "positions")
)
to_dump.tofile(positions_filename)
if not self._copy_safe:
to_dump = _append_last_offsets(self.streamlines.copy()._offsets,
self.header["NB_VERTICES"])
else:
to_dump = _append_last_offsets(self.streamlines._offsets,
self.header["NB_VERTICES"])
offsets_filename = _generate_filename_from_data(
self.streamlines._offsets, os.path.join(tmp_dir.name, "offsets")
)
to_dump.tofile(offsets_filename)
if len(self.data_per_vertex.keys()) > 0:
os.mkdir(os.path.join(tmp_dir.name, "dpv/"))
for dpv_key in self.data_per_vertex.keys():
if not self._copy_safe:
to_dump = self.data_per_vertex[dpv_key].copy()._data
else:
to_dump = self.data_per_vertex[dpv_key]._data
dpv_filename = _generate_filename_from_data(
to_dump, os.path.join(tmp_dir.name, "dpv/", dpv_key)
)
to_dump.tofile(dpv_filename)
if len(self.data_per_streamline.keys()) > 0:
os.mkdir(os.path.join(tmp_dir.name, "dps/"))
for dps_key in self.data_per_streamline.keys():
to_dump = self.data_per_streamline[dps_key]
dps_filename = _generate_filename_from_data(
to_dump, os.path.join(tmp_dir.name, "dps/", dps_key)
)
to_dump.tofile(dps_filename)
if len(self.groups.keys()) > 0:
os.mkdir(os.path.join(tmp_dir.name, "groups/"))
for group_key in self.groups.keys():
to_dump = self.groups[group_key]
group_filename = _generate_filename_from_data(
to_dump, os.path.join(tmp_dir.name, "groups/", group_key)
)
to_dump.tofile(group_filename)
if group_key not in self.data_per_group:
continue
for dpg_key in self.data_per_group[group_key].keys():
# Creates 'dpg/' only if required
if not os.path.isdir(os.path.join(tmp_dir.name, "dpg/")):
os.mkdir(os.path.join(tmp_dir.name, "dpg/"))
if not os.path.isdir(os.path.join(tmp_dir.name, "dpg/", group_key)):
os.mkdir(os.path.join(tmp_dir.name, "dpg/", group_key))
to_dump = self.data_per_group[group_key][dpg_key]
dpg_filename = _generate_filename_from_data(
to_dump, os.path.join(
tmp_dir.name, "dpg/", group_key, dpg_key)
)
to_dump.tofile(dpg_filename)
copy_trx = load_from_directory(tmp_dir.name)
copy_trx._uncompressed_folder_handle = tmp_dir
return copy_trx
def _get_real_len(self) -> Tuple[int, int]:
"""Get the real size of data (ignoring zeros of preallocation)
Returns
A tuple representing the index of the last streamline and the total
length of all the streamlines
"""
if len(self.streamlines._lengths) == 0:
return 0, 0
last_elem_pos = _dichotomic_search(self.streamlines._lengths)
if last_elem_pos != -1:
strs_end = int(last_elem_pos + 1)
pts_end = int(np.sum(self.streamlines._lengths[0:strs_end]))
return strs_end, pts_end
return 0, 0
def _copy_fixed_arrays_from(
self,
trx: Type["TrxFile"],
strs_start: int = 0,
pts_start: int = 0,
nb_strs_to_copy: Optional[int] = None,
) -> Tuple[int, int]:
"""Fill a TrxFile using another and start indexes (preallocation)
Keyword arguments:
trx -- TrxFile to copy data from
strs_start -- The start index of the streamline
pts_start -- The start index of the point
nb_strs_to_copy -- The number of streamlines to copy. If not set
will copy all
Returns
A tuple representing the end of the copied streamlines and end of
copied points
"""
if nb_strs_to_copy is None:
curr_strs_len, curr_pts_len = trx._get_real_len()
else:
curr_strs_len = int(nb_strs_to_copy)
curr_pts_len = np.sum(trx.streamlines._lengths[0:curr_strs_len])
curr_pts_len = int(curr_pts_len)
strs_end = strs_start + curr_strs_len
pts_end = pts_start + curr_pts_len
if curr_pts_len == 0:
return strs_start, pts_start
# Mandatory arrays
self.streamlines._data[pts_start:pts_end] = \
trx.streamlines._data[0:curr_pts_len]
self.streamlines._offsets[strs_start:strs_end] = \
(trx.streamlines._offsets[0:curr_strs_len] + pts_start)
self.streamlines._lengths[strs_start:strs_end] = \
trx.streamlines._lengths[0:curr_strs_len]
# Optional fixed-sized arrays
for dpv_key in self.data_per_vertex.keys():
self.data_per_vertex[dpv_key]._data[
pts_start:pts_end
] = trx.data_per_vertex[dpv_key]._data[0:curr_pts_len]
self.data_per_vertex[dpv_key]._offsets = self.streamlines._offsets
self.data_per_vertex[dpv_key]._lengths = self.streamlines._lengths
for dps_key in self.data_per_streamline.keys():
self.data_per_streamline[dps_key][
strs_start:strs_end
] = trx.data_per_streamline[dps_key][0:curr_strs_len]
return strs_end, pts_end
@staticmethod
def _initialize_empty_trx(
nb_streamlines: int, nb_vertices: int,
init_as: Optional[Type["TrxFile"]] = None) -> Type["TrxFile"]:
"""Create on-disk memmaps of a certain size (preallocation)
Keyword arguments:
nb_streamlines -- The number of streamlines that the empty TrxFile
will be initialized with
nb_vertices -- The number of vertices that the empty TrxFile will
be initialized with
init_as -- A TrxFile to initialize the empty TrxFile with
Returns:
An empty TrxFile preallocated with a certain size
"""
trx = TrxFile()
tmp_dir = get_trx_tmp_dir()
logging.info("Temporary folder for memmaps: {}".format(tmp_dir.name))
trx.header["NB_VERTICES"] = nb_vertices
trx.header["NB_STREAMLINES"] = nb_streamlines
if init_as is not None:
trx.header["VOXEL_TO_RASMM"] = init_as.header["VOXEL_TO_RASMM"]
trx.header["DIMENSIONS"] = init_as.header["DIMENSIONS"]
positions_dtype = init_as.streamlines._data.dtype
offsets_dtype = init_as.streamlines._offsets.dtype
lengths_dtype = init_as.streamlines._lengths.dtype
else:
positions_dtype = np.dtype(np.float16)
offsets_dtype = np.dtype(np.uint32)
lengths_dtype = np.dtype(np.uint32)
logging.debug(
"Initializing positions with dtype: {}".format(
positions_dtype.name)
)
logging.debug(
"Initializing offsets with dtype: {}".format(offsets_dtype.name))
logging.debug(
"Initializing lengths with dtype: {}".format(lengths_dtype.name))
# A TrxFile without init_as only contain the essential arrays
positions_filename = os.path.join(
tmp_dir.name, "positions.3.{}".format(positions_dtype.name)
)
trx.streamlines._data = _create_memmap(
positions_filename, mode="w+", shape=(nb_vertices, 3),
dtype=positions_dtype
)
offsets_filename = os.path.join(
tmp_dir.name, "offsets.{}".format(offsets_dtype.name)
)
trx.streamlines._offsets = _create_memmap(
offsets_filename, mode="w+", shape=(nb_streamlines,),
dtype=offsets_dtype
)
trx.streamlines._lengths = np.zeros(
shape=(nb_streamlines,), dtype=lengths_dtype
)
# Only the structure of fixed-size arrays is copied
if init_as is not None:
if len(init_as.data_per_vertex.keys()) > 0:
os.mkdir(os.path.join(tmp_dir.name, "dpv/"))
if len(init_as.data_per_streamline.keys()) > 0:
os.mkdir(os.path.join(tmp_dir.name, "dps/"))
for dpv_key in init_as.data_per_vertex.keys():
dtype = init_as.data_per_vertex[dpv_key]._data.dtype
tmp_as = init_as.data_per_vertex[dpv_key]._data
if tmp_as.ndim == 1:
dpv_filename = os.path.join(
tmp_dir.name, "dpv/" "{}.{}".format(
dpv_key, dtype.name)
)
shape = (nb_vertices, 1)
elif tmp_as.ndim == 2:
dim = tmp_as.shape[-1]
shape = (nb_vertices, dim)
dpv_filename = os.path.join(
tmp_dir.name, "dpv/" "{}.{}.{}".format(
dpv_key, dim, dtype.name)
)
else:
raise ValueError("Invalid dimensionality.")
logging.debug(
"Initializing {} (dpv) with dtype: "
"{}".format(dpv_key, dtype.name)
)
trx.data_per_vertex[dpv_key] = ArraySequence()
trx.data_per_vertex[dpv_key]._data = _create_memmap(
dpv_filename, mode="w+", shape=shape, dtype=dtype
)
trx.data_per_vertex[dpv_key]._offsets = trx.streamlines._offsets
trx.data_per_vertex[dpv_key]._lengths = trx.streamlines._lengths
for dps_key in init_as.data_per_streamline.keys():
dtype = init_as.data_per_streamline[dps_key].dtype
tmp_as = init_as.data_per_streamline[dps_key]
if tmp_as.ndim == 1:
dps_filename = os.path.join(
tmp_dir.name, "dps/" "{}.{}".format(
dps_key, dtype.name)
)
shape = (nb_streamlines,)
elif tmp_as.ndim == 2:
dim = tmp_as.shape[-1]
shape = (nb_streamlines, dim)
dps_filename = os.path.join(
tmp_dir.name, "dps/" "{}.{}.{}".format(
dps_key, dim, dtype.name)
)
else:
raise ValueError("Invalid dimensionality.")
logging.debug(
"Initializing {} (dps) with and dtype: "
"{}".format(dps_key, dtype.name)
)
trx.data_per_streamline[dps_key] = _create_memmap(
dps_filename, mode="w+", shape=shape, dtype=dtype
)
trx._uncompressed_folder_handle = tmp_dir
return trx
def _create_trx_from_pointer(
header: dict,
dict_pointer_size: dict,
root_zip: Optional[str] = None,
root: Optional[str] = None,
) -> Type["TrxFile"]:
"""After reading the structure of a zip/folder, create a TrxFile
Keyword arguments:
header -- A TrxFile header dictionary which will be used for the
new TrxFile
dict_pointer_size -- A dictionary containing the filenames of all
the files within the TrxFile disk file/folder
root_zip -- The path of the ZipFile pointer
root -- The dirname of the ZipFile pointer
Returns:
A TrxFile constructer from the pointer provided
"""
# TODO support empty positions, using optional tag?
trx = TrxFile()
trx.header = header
positions, offsets = None, None
for elem_filename in dict_pointer_size.keys():
if root_zip:
filename = root_zip
else:
filename = elem_filename
folder = os.path.dirname(elem_filename)
base, dim, ext = _split_ext_with_dimensionality(elem_filename)
if ext == ".bit":
ext = ".bool"
mem_adress, size = dict_pointer_size[elem_filename]
if root is not None:
# This is for Unix
if os.name != 'nt' and folder.startswith(root.rstrip("/")):
folder = folder.replace(root, "").lstrip("/")
# These three are for Windows
elif os.path.isdir(folder) and os.path.basename(folder) in ['dpv', 'dps', 'groups']:
folder = os.path.basename(folder)
elif os.path.basename(os.path.dirname(folder)) == 'dpg':
folder = os.path.join('dpg', os.path.basename(folder))
else:
folder = ''
# Parse/walk the directory tree
if base == "positions" and folder == "":
if size != trx.header["NB_VERTICES"] * 3 or dim != 3:
raise ValueError("Wrong data size/dimensionality.")
positions = _create_memmap(
filename,
mode="r+",
offset=mem_adress,
shape=(trx.header["NB_VERTICES"], 3),
dtype=ext[1:],
)
elif base == "offsets" and folder == "":
if size != trx.header["NB_STREAMLINES"]+1 or dim != 1:
raise ValueError("Wrong offsets size/dimensionality.")
offsets = _create_memmap(
filename,
mode="r+",
offset=mem_adress,
shape=(trx.header["NB_STREAMLINES"]+1,),
dtype=ext[1:],
)
if offsets[-1] != 0:
lengths = _compute_lengths(offsets)
else:
lengths = [0]
elif folder == "dps":
nb_scalar = size / trx.header["NB_STREAMLINES"]
if not nb_scalar.is_integer() or nb_scalar != dim:
raise ValueError("Wrong dps size/dimensionality.")
else:
shape = (trx.header["NB_STREAMLINES"], int(nb_scalar))
trx.data_per_streamline[base] = _create_memmap(
filename, mode="r+", offset=mem_adress, shape=shape,
dtype=ext[1:]
)
elif folder == "dpv":
nb_scalar = size / trx.header["NB_VERTICES"]
if not nb_scalar.is_integer() or nb_scalar != dim:
raise ValueError("Wrong dpv size/dimensionality.")
else:
shape = (trx.header["NB_VERTICES"], int(nb_scalar))
trx.data_per_vertex[base] = _create_memmap(
filename, mode="r+", offset=mem_adress, shape=shape,
dtype=ext[1:]
)
elif folder.startswith("dpg"):
if int(size) != dim:
raise ValueError("Wrong dpg size/dimensionality.")
else:
shape = (1, int(size))
# Handle the two-layers architecture
data_name = os.path.basename(base)
sub_folder = os.path.basename(folder)
if sub_folder not in trx.data_per_group:
trx.data_per_group[sub_folder] = {}
trx.data_per_group[sub_folder][data_name] = _create_memmap(
filename, mode="r+", offset=mem_adress, shape=shape,
dtype=ext[1:]
)
elif folder == "groups":
# Groups are simply indices, nothing else
# TODO Crash if not uint?
if dim != 1:
raise ValueError("Wrong group dimensionality.")
else:
shape = (int(size),)
trx.groups[base] = _create_memmap(
filename, mode="r+", offset=mem_adress, shape=shape,
dtype=ext[1:]
)
else:
logging.error(
"{} is not part of a valid structure.".format(
elem_filename)
)
# All essential array must be declared
if positions is not None and offsets is not None:
trx.streamlines._data = positions
trx.streamlines._offsets = offsets[:-1]
trx.streamlines._lengths = lengths
else:
raise ValueError("Missing essential data.")
for dpv_key in trx.data_per_vertex:
tmp = trx.data_per_vertex[dpv_key]
trx.data_per_vertex[dpv_key] = ArraySequence()
trx.data_per_vertex[dpv_key]._data = tmp
trx.data_per_vertex[dpv_key]._offsets = offsets[:-1]
trx.data_per_vertex[dpv_key]._lengths = lengths
return trx
def resize(
self,
nb_streamlines: Optional[int] = None,
nb_vertices: Optional[int] = None,
delete_dpg: bool = False,
) -> None:
"""Remove the ununsed portion of preallocated memmaps
Keyword arguments:
nb_streamlines -- The number of streamlines to keep
nb_vertices -- The number of vertices to keep
delete_dpg -- Remove data_per_group when resizing
"""
if not self._copy_safe:
raise ValueError("Cannot resize a sliced datasets.")
strs_end, pts_end = self._get_real_len()
if nb_streamlines is not None and nb_streamlines < strs_end:
strs_end = nb_streamlines
logging.info(
"Resizing (down) memmaps, less streamlines than it "
"actually contains."
)
if nb_vertices is None:
pts_end = int(np.sum(self.streamlines._lengths[0:nb_streamlines]))
nb_vertices = pts_end
elif nb_vertices < pts_end:
# Resizing vertices only is too dangerous, not allowed
logging.warning("Cannot resize (down) vertices for consistency.")
return
if nb_streamlines is None:
nb_streamlines = strs_end
if (
nb_streamlines == self.header["NB_STREAMLINES"]
and nb_vertices == self.header["NB_VERTICES"]
):
logging.debug("TrxFile of the right size, no resizing.")
return
trx = self._initialize_empty_trx(
nb_streamlines, nb_vertices, init_as=self)
logging.info(
"Resizing streamlines from size {} to {}".format(
len(self.streamlines), nb_streamlines
)
)
logging.info(
"Resizing vertices from size {} to {}".format(
len(self.streamlines._data), nb_vertices
)
)
# Copy the fixed-sized info from the original TrxFile to the new
# (resized) one.
if nb_streamlines < self.header["NB_STREAMLINES"]:
trx._copy_fixed_arrays_from(self, nb_strs_to_copy=nb_streamlines)
else:
trx._copy_fixed_arrays_from(self)
tmp_dir = trx._uncompressed_folder_handle.name
if len(self.groups.keys()) > 0:
os.mkdir(os.path.join(tmp_dir, "groups/"))
for group_key in self.groups.keys():
group_dtype = self.groups[group_key].dtype
group_name = os.path.join(
tmp_dir, "groups/", "{}.{}".format(group_key, group_dtype.name)
)
ori_len = len(self.groups[group_key])
# Remove groups indices if resizing down
tmp = self.groups[group_key][self.groups[group_key] < strs_end]
trx.groups[group_key] = _create_memmap(
group_name, mode="w+", shape=(len(tmp),), dtype=group_dtype
)
logging.debug(
"{} group went from {} items to {}".format(
group_key, ori_len, len(tmp))
)
trx.groups[group_key][:] = tmp
if delete_dpg:
self.close()
self.__dict__ = trx.__dict__
return
if len(self.data_per_group.keys()) > 0:
os.mkdir(os.path.join(tmp_dir, "dpg/"))
for group_key in self.data_per_group:
if not os.path.isdir(os.path.join(tmp_dir, "dpg/", group_key)):
os.mkdir(os.path.join(tmp_dir, "dpg/", group_key))
if group_key not in trx.data_per_group:
trx.data_per_group[group_key] = {}
for dpg_key in self.data_per_group[group_key].keys():
dpg_dtype = self.data_per_group[group_key][dpg_key].dtype
dpg_filename = _generate_filename_from_data(
self.data_per_group[group_key][dpg_key],
os.path.join(tmp_dir, "dpg/", group_key, dpg_key),
)
shape = self.data_per_group[group_key][dpg_key].shape
if dpg_key not in trx.data_per_group[group_key]:
trx.data_per_group[group_key][dpg_key] = {}
trx.data_per_group[group_key][dpg_key] = _create_memmap(
dpg_filename, mode="w+", shape=shape, dtype=dpg_dtype
)
trx.data_per_group[group_key][dpg_key][:] = \
self.data_per_group[group_key][dpg_key]
self.close()
self.__dict__ = trx.__dict__
def get_dtype_dict(self):
"""Get the dtype dictionary for the TrxFile
Returns
A dictionary containing the dtype for each data element
"""
dtype_dict = {"positions": self.streamlines._data.dtype,
"offsets": self.streamlines._offsets.dtype,
"dpv": {}, "dps": {}, "dpg": {}, "groups": {}}
for key in self.data_per_vertex.keys():
dtype_dict['dpv'][key] = self.data_per_vertex[key]._data.dtype
for key in self.data_per_streamline.keys():
dtype_dict['dps'][key] = self.data_per_streamline[key].dtype
for group_key in self.data_per_group.keys():
dtype_dict['groups'][group_key] = self.groups[group_key].dtype
for group_key in self.data_per_group.keys():
dtype_dict['dpg'][group_key] = {}
for dpg_key in self.data_per_group[group_key].keys():
dtype_dict['dpg'][group_key][dpg_key] = \
self.data_per_group[group_key][dpg_key].dtype
return dtype_dict
def append(self, obj, extra_buffer: int = 0) -> None:
curr_dtype_dict = self.get_dtype_dict()
if dipy_available:
from dipy.io.stateful_tractogram import StatefulTractogram
if not isinstance(obj, (TrxFile, Tractogram)) \
and (dipy_available and not isinstance(obj, StatefulTractogram)):
raise TypeError(
"{} is not a supported object type for appending.".format(type(obj)))
elif isinstance(obj, Tractogram):
obj = self.from_tractogram(obj, reference=self.header,
dtype_dict=curr_dtype_dict)
elif dipy_available and isinstance(obj, StatefulTractogram):
obj = self.from_sft(obj, dtype_dict=curr_dtype_dict)
self._append_trx(obj, extra_buffer=extra_buffer)
def _append_trx(self, trx: Type["TrxFile"],
extra_buffer: int = 0) -> None:
"""Append a TrxFile to another (support buffer)
Keyword arguments:
trx -- The TrxFile to append to the current TrxFile
extra_buffer -- The additional buffer space required to append data
"""
strs_end, pts_end = self._get_real_len()
nb_streamlines = strs_end + trx.header["NB_STREAMLINES"]
nb_vertices = pts_end + trx.header["NB_VERTICES"]
if (
self.header["NB_STREAMLINES"] < nb_streamlines
or self.header["NB_VERTICES"] < nb_vertices
):
self.resize(
nb_streamlines=nb_streamlines + extra_buffer,
nb_vertices=nb_vertices + extra_buffer * 100,
)
_ = concatenate([self, trx], preallocation=True, delete_groups=True)
def get_group(
self, key: str, keep_group: bool = True, copy_safe: bool = False
) -> Type["TrxFile"]:
"""Get a particular group from the TrxFile
Keyword arguments:
key -- The group name to select
keep_group -- Make sure group exists in returned TrxFile
copy_safe -- Perform a deepcopy
Returns
A TrxFile exclusively containing data from said group
"""
return self.select(self.groups[key], keep_group=keep_group, copy_safe=copy_safe)
def select(
self, indices: np.ndarray, keep_group: bool = True, copy_safe: bool = False
) -> Type["TrxFile"]:
"""Get a subset of items, always vertices to the same memmaps
Keyword arguments:
indices -- The list of indices of elements to return
keep_group -- Ensure group is returned in output TrxFile
copy_safe -- Perform a deep-copy
Returns:
A TrxFile containing data originating from the selected indices
"""
indices = np.array(indices, dtype=np.uint32)
new_trx = TrxFile()
new_trx._copy_safe = copy_safe
new_trx.header = deepcopy(self.header)
if isinstance(indices, np.ndarray) and len(indices) == 0:
# Even while empty, basic dtype and header must be coherent
positions_dtype = self.streamlines._data.dtype
offsets_dtype = self.streamlines._offsets.dtype
lengths_dtype = self.streamlines._lengths.dtype
new_trx.streamlines._data = new_trx.streamlines._data.reshape(
(0, 3)
).astype(positions_dtype)
new_trx.streamlines._offsets = new_trx.streamlines._offsets.astype(
offsets_dtype
)
new_trx.streamlines._lengths = new_trx.streamlines._lengths.astype(
lengths_dtype
)
new_trx.header["NB_VERTICES"] = len(new_trx.streamlines._data)
new_trx.header["NB_STREAMLINES"] = len(
new_trx.streamlines._lengths)
return new_trx.deepcopy() if copy_safe else new_trx
new_trx.streamlines = (
self.streamlines[indices].copy(
) if copy_safe else self.streamlines[indices]
)
for dpv_key in self.data_per_vertex.keys():
new_trx.data_per_vertex[dpv_key] = (
self.data_per_vertex[dpv_key][indices].copy()
if copy_safe
else self.data_per_vertex[dpv_key][indices]
)
for dps_key in self.data_per_streamline.keys():
new_trx.data_per_streamline[dps_key] = (
self.data_per_streamline[dps_key][indices].copy()
if copy_safe
else self.data_per_streamline[dps_key][indices]
)
# Not keeping group is equivalent to the [] operator
if keep_group:
logging.warning(
"Keeping dpg despite affecting the group " "items.")
for group_key in self.groups.keys():
# Keep the group indices even when fancy slicing
index = np.argsort(indices)
sorted_x = indices[index]
sorted_index = np.searchsorted(
sorted_x, self.groups[group_key])
yindex = np.take(index, sorted_index, mode="clip")
mask = indices[yindex] != self.groups[group_key]
intersect = yindex[~mask]
if len(intersect) == 0:
continue
new_trx.groups[group_key] = intersect
if group_key in self.data_per_group:
for dpg_key in self.data_per_group[group_key].keys():
if group_key not in new_trx.data_per_group:
new_trx.data_per_group[group_key] = {}
new_trx.data_per_group[group_key][
dpg_key
] = self.data_per_group[group_key][dpg_key]
new_trx.header["NB_VERTICES"] = len(new_trx.streamlines._data)
new_trx.header["NB_STREAMLINES"] = len(new_trx.streamlines._lengths)
return new_trx.deepcopy() if copy_safe else new_trx
@staticmethod
def from_lazy_tractogram(obj: ["LazyTractogram"], reference,
extra_buffer: int = 0,
chunk_size: int = 10000,
dtype_dict: dict = {'positions': np.float32,
'offsets': np.uint32,
'dpv': {}, 'dps': {}}) \
-> Type["TrxFile"]:
"""Append a TrxFile to another (support buffer)
Keyword arguments:
trx -- The TrxFile to append to the current TrxFile
extra_buffer -- The buffer space between reallocation.
This number should be a number of streamlines.
Use 0 for no buffer.
chunk_size -- The number of streamlines to save at a time.
"""
data = {'strs': [], 'dpv': {}, 'dps': {}}
concat = None
count = 0
iterator = iter(obj)
while True:
if count < chunk_size:
try:
i = next(iterator)
count += 1
except StopIteration:
obj = convert_data_dict_to_tractogram(data)
if concat is None:
if len(obj.streamlines) == 0:
concat = TrxFile()
else:
concat = TrxFile.from_tractogram(obj,
reference=reference,
dtype_dict=dtype_dict)
elif len(obj.streamlines) > 0:
curr_obj = TrxFile.from_tractogram(obj,
reference=reference,
dtype_dict=dtype_dict)
concat.append(curr_obj)
break
append_generator_to_dict(i, data)
else:
obj = convert_data_dict_to_tractogram(data)
if concat is None:
concat = TrxFile.from_tractogram(obj,
reference=reference,
dtype_dict=dtype_dict)
else:
curr_obj = TrxFile.from_tractogram(obj,
reference=reference,
dtype_dict=dtype_dict)
concat.append(curr_obj, extra_buffer=extra_buffer)
data = {'strs': [], 'dpv': {}, 'dps': {}}
count = 0
concat.resize()
return concat
@staticmethod
def from_sft(sft, dtype_dict={}):
"""Generate a valid TrxFile from a StatefulTractogram"""
if len(sft.dtype_dict) > 0:
dtype_dict = sft.dtype_dict
if 'dpp' in dtype_dict:
dtype_dict['dpv'] = dtype_dict.pop('dpp')
elif len(dtype_dict) == 0:
dtype_dict = {'positions': np.float32, 'offsets': np.uint32,
'dpv': {}, 'dps': {}}
positions_dtype = dtype_dict['positions']
offsets_dtype = dtype_dict['offsets']
if not np.issubdtype(positions_dtype, np.floating):
logging.warning(
"Casting positions as {}, considering using a floating point "
"dtype.".format(positions_dtype))
if not np.issubdtype(offsets_dtype, np.integer):
logging.warning(
"Casting offsets as {}, considering using a integer "
"dtype.".format(offsets_dtype))
trx = TrxFile(nb_vertices=len(sft.streamlines._data),
nb_streamlines=len(sft.streamlines))
trx.header = {
"DIMENSIONS": sft.dimensions.tolist(),
"VOXEL_TO_RASMM": sft.affine.tolist(),
"NB_VERTICES": len(sft.streamlines._data),
"NB_STREAMLINES": len(sft.streamlines),
}
old_space = deepcopy(sft.space)
old_origin = deepcopy(sft.origin)
# TrxFile are written on disk in RASMM/center convention
sft.to_rasmm()
sft.to_center()
tmp_streamlines = deepcopy(sft.streamlines)
# Cast the int64 of Nibabel to uint32
tmp_streamlines._offsets = tmp_streamlines._offsets.astype(
offsets_dtype)
tmp_streamlines._data = tmp_streamlines._data.astype(positions_dtype)
trx.streamlines = tmp_streamlines
for key in sft.data_per_point:
dtype_to_use = dtype_dict['dpv'][key] if key in dtype_dict['dpv'] \
else np.float32
trx.data_per_vertex[key] = \
sft.data_per_point[key]
trx.data_per_vertex[key]._data = \
sft.data_per_point[key]._data.astype(dtype_to_use)
for key in sft.data_per_streamline:
dtype_to_use = dtype_dict['dps'][key] if key in dtype_dict['dps'] \
else np.float32
trx.data_per_streamline[key] = sft.data_per_streamline[key].astype(
dtype_to_use)
# For safety and for RAM, convert the whole object to memmaps
tmp_dir = get_trx_tmp_dir()
save(trx, tmp_dir.name)
trx.close()
trx = load_from_directory(tmp_dir.name)
trx._uncompressed_folder_handle = tmp_dir
sft.to_space(old_space)
sft.to_origin(old_origin)
del tmp_streamlines
return trx
@staticmethod
def from_tractogram(tractogram, reference,
dtype_dict={'positions': np.float32,
'offsets': np.uint32,
'dpv': {}, 'dps': {}}):
"""Generate a valid TrxFile from a Nibabel Tractogram"""
positions_dtype = dtype_dict['positions'] if 'positions' in dtype_dict \
else np.float32
offsets_dtype = dtype_dict['offsets'] if 'offsets' in dtype_dict \
else np.uint32
if not np.issubdtype(positions_dtype, np.floating):
logging.warning(
"Casting positions as {}, considering using a floating point "
"dtype.".format(positions_dtype))
if not np.issubdtype(offsets_dtype, np.integer):
logging.warning(
"Casting offsets as {}, considering using a integer "
"dtype.".format(offsets_dtype))
trx = TrxFile(
nb_vertices=len(tractogram.streamlines._data),
nb_streamlines=len(tractogram.streamlines),
)
affine, dimensions, _, _ = get_reference_info_wrapper(reference)
trx.header = {
"DIMENSIONS": dimensions,
"VOXEL_TO_RASMM": affine,
"NB_VERTICES": len(tractogram.streamlines._data),
"NB_STREAMLINES": len(tractogram.streamlines),
}
tmp_streamlines = deepcopy(tractogram.streamlines)
# Cast the int64 of Nibabel to uint32
tmp_streamlines._offsets = tmp_streamlines._offsets.astype(
offsets_dtype)
tmp_streamlines._data = tmp_streamlines._data.astype(positions_dtype)
trx.streamlines = tmp_streamlines
for key in tractogram.data_per_point:
dtype_to_use = dtype_dict['dpv'][key] if key in dtype_dict['dpv'] \
else np.float32
trx.data_per_vertex[key] = \
tractogram.data_per_point[key]
trx.data_per_vertex[key]._data = \
tractogram.data_per_point[key]._data.astype(dtype_to_use)
for key in tractogram.data_per_streamline:
dtype_to_use = dtype_dict['dps'][key] if key in dtype_dict['dps'] \
else np.float32
trx.data_per_streamline[key] = \
tractogram.data_per_streamline[key].astype(dtype_to_use)
# For safety and for RAM, convert the whole object to memmaps
tmp_dir = get_trx_tmp_dir()
save(trx, tmp_dir.name)
trx.close()
trx = load_from_directory(tmp_dir.name)
del tmp_streamlines
return trx
def to_tractogram(self, resize=False):
"""Convert a TrxFile to a nibabel Tractogram (in RAM)"""
if resize:
self.resize()
trx_obj = self.to_memory()
tractogram = nib.streamlines.Tractogram([], affine_to_rasmm=np.eye(4))
tractogram._set_streamlines(trx_obj.streamlines)
tractogram._data_per_point = trx_obj.data_per_vertex
tractogram._data_per_streamline = trx_obj.data_per_streamline
return tractogram
def to_memory(self, resize: bool = False) -> Type["TrxFile"]:
"""Convert a TrxFile to a RAM representation
Keyword arguments:
resize -- Resize TrxFile when converting to RAM representation
Returns:
A non memory mapped TrxFile
"""
if resize:
self.resize()
trx_obj = TrxFile()
trx_obj.header = deepcopy(self.header)
trx_obj.streamlines = deepcopy(self.streamlines)
for key in self.data_per_vertex:
trx_obj.data_per_vertex[key] = deepcopy(self.data_per_vertex[key])
for key in self.data_per_streamline:
trx_obj.data_per_streamline[key] = deepcopy(
self.data_per_streamline[key])
for key in self.groups:
trx_obj.groups[key] = deepcopy(self.groups[key])
for key in self.data_per_group:
trx_obj.data_per_group[key] = deepcopy(self.data_per_group[key])
return trx_obj
def to_sft(self, resize=False):
"""Convert a TrxFile to a valid StatefulTractogram (in RAM)"""
try:
from dipy.io.stateful_tractogram import StatefulTractogram, Space
except ImportError:
logging.error('Dipy library is missing, cannot convert to '
'StatefulTractogram.')
return None
affine = np.array(self.header["VOXEL_TO_RASMM"], dtype=np.float32)
dimensions = np.array(self.header["DIMENSIONS"], dtype=np.uint16)
vox_sizes = np.array(voxel_sizes(affine), dtype=np.float32)
vox_order = "".join(aff2axcodes(affine))
space_attributes = (affine, dimensions, vox_sizes, vox_order)
if resize:
self.resize()
sft = StatefulTractogram(
deepcopy(self.streamlines),
space_attributes,
Space.RASMM,
data_per_point=deepcopy(self.data_per_vertex),
data_per_streamline=deepcopy(self.data_per_streamline),
)
tmp_dict = self.get_dtype_dict()
if 'dpv' in tmp_dict:
tmp_dict['dpp'] = tmp_dict.pop('dpv')
sft.dtype_dict = self.get_dtype_dict()
return sft
def close(self) -> None:
"""Cleanup on-disk temporary folder and initialize an empty TrxFile"""
if self._uncompressed_folder_handle is not None:
close_or_delete_mmap(self.streamlines)
# # Close or delete attributes in dictionaries
for key in self.data_per_vertex:
close_or_delete_mmap(self.data_per_vertex[key])
for key in self.data_per_streamline:
close_or_delete_mmap(self.data_per_streamline[key])
for key in self.groups:
close_or_delete_mmap(self.groups[key])
for key in self.data_per_group:
for dpg in self.data_per_group[key]:
close_or_delete_mmap(self.data_per_group[key][dpg])
try:
self._uncompressed_folder_handle.cleanup()
except PermissionError:
logging.error("Windows PermissionError, temporary directory {}"
"was not deleted!".format(self._uncompressed_folder_handle.name))
self.__init__()
logging.debug("Deleted memmaps and intialized empty TrxFile.")
|