File: workflows.py

package info (click to toggle)
python-trx-python 0.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 408 kB
  • sloc: python: 3,394; makefile: 66
file content (495 lines) | stat: -rw-r--r-- 20,429 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
# -*- coding: utf-8 -*-

from copy import deepcopy
import csv
import gzip
import json
import logging
import os
import tempfile

import nibabel as nib
from nibabel.streamlines.array_sequence import ArraySequence
import numpy as np
try:
    import dipy
    dipy_available = True
except ImportError:
    dipy_available = False

from trx.io import get_trx_tmp_dir, load, load_sft_with_reference, save
from trx.streamlines_ops import perform_streamlines_operation, intersection
import trx.trx_file_memmap as tmm
from trx.viz import display
from trx.utils import (flip_sft, is_header_compatible,
                       get_axis_shift_vector,
                       get_reference_info_wrapper,
                       get_reverse_enum,
                       load_matrix_in_any_format,
                       split_name_with_gz)


def convert_dsi_studio(in_dsi_tractogram, in_dsi_fa, out_tractogram,
                       remove_invalid=True, keep_invalid=False):
    if not dipy_available:
        logging.error('Dipy library is missing, scripts are not available.')
        return None
    from dipy.io.stateful_tractogram import StatefulTractogram, Space
    from dipy.io.streamline import save_tractogram, load_tractogram

    in_ext = split_name_with_gz(in_dsi_tractogram)[1]
    out_ext = split_name_with_gz(out_tractogram)[1]

    if in_ext == '.trk.gz':
        with gzip.open(in_dsi_tractogram, 'rb') as f_in:
            with open('tmp.trk', 'wb') as f_out:
                f_out.writelines(f_in)
                sft = load_tractogram('tmp.trk', 'same',
                                      bbox_valid_check=False)
            os.remove('tmp.trk')
    elif in_ext == '.trk':
        sft = load_tractogram(in_dsi_tractogram, 'same',
                              bbox_valid_check=False)
    else:
        raise IOError('{} is not currently supported.'.format(in_ext))

    sft.to_vox()
    sft_fix = StatefulTractogram(sft.streamlines, in_dsi_fa, Space.VOXMM,
                                 data_per_point=sft.data_per_point,
                                 data_per_streamline=sft.data_per_streamline)
    sft_fix.to_vox()
    flip_axis = ['x', 'y']
    sft_fix.streamlines._data -= get_axis_shift_vector(flip_axis)
    sft_flip = flip_sft(sft_fix, flip_axis)

    sft_flip.to_rasmm()
    sft_flip.streamlines._data -= [0.5, 0.5, -0.5]

    if remove_invalid:
        sft_flip.remove_invalid_streamlines()

    if out_ext != '.trx':
        save_tractogram(sft_flip, out_tractogram,
                        bbox_valid_check=not keep_invalid)
    else:
        trx = tmm.TrxFile.from_sft(sft_flip)
        tmm.save(trx, out_tractogram)


def convert_tractogram(in_tractogram, out_tractogram, reference,
                       pos_dtype='float32', offsets_dtype='uint32'):
    if not dipy_available:
        logging.error('Dipy library is missing, scripts are not available.')
        return None
    from dipy.io.streamline import save_tractogram

    in_ext = split_name_with_gz(in_tractogram)[1]
    out_ext = split_name_with_gz(out_tractogram)[1]

    if in_ext == out_ext:
        raise IOError('Input and output cannot be of the same file format.')

    if in_ext != '.trx':
        sft = load_sft_with_reference(in_tractogram, reference,
                                      bbox_check=False)
    else:
        trx = tmm.load(in_tractogram)
        sft = trx.to_sft()
        trx.close()

    if out_ext != '.trx':
        if out_ext == '.vtk':
            if sft.streamlines._data.dtype.name != pos_dtype:
                sft.streamlines._data = sft.streamlines._data.astype(pos_dtype)
            if offsets_dtype == 'uint64' or offsets_dtype == 'uint32':
                offsets_dtype = offsets_dtype[1:]
            if sft.streamlines._offsets.dtype.name != offsets_dtype:
                sft.streamlines._offsets = sft.streamlines._offsets.astype(
                    offsets_dtype)
        save_tractogram(sft, out_tractogram, bbox_valid_check=False)
    else:
        trx = tmm.TrxFile.from_sft(sft)
        if trx.streamlines._data.dtype.name != pos_dtype:
            trx.streamlines._data = trx.streamlines._data.astype(pos_dtype)
        if trx.streamlines._offsets.dtype.name != offsets_dtype:
            trx.streamlines._offsets = trx.streamlines._offsets.astype(
                offsets_dtype)
        tmm.save(trx, out_tractogram)
        trx.close()


def tractogram_simple_compare(in_tractograms, reference):
    if not dipy_available:
        logging.error('Dipy library is missing, scripts are not available.')
        return
    from dipy.io.stateful_tractogram import StatefulTractogram

    tractogram_obj = load(in_tractograms[0], reference)
    if not isinstance(tractogram_obj, StatefulTractogram):
        sft_1 = tractogram_obj.to_sft()
        tractogram_obj.close()
    else:
        sft_1 = tractogram_obj

    tractogram_obj = load(in_tractograms[1], reference)
    if not isinstance(tractogram_obj, StatefulTractogram):
        sft_2 = tractogram_obj.to_sft()
        tractogram_obj.close()
    else:
        sft_2 = tractogram_obj

    if np.allclose(sft_1.streamlines._data, sft_2.streamlines._data,
                   atol=0.001):
        print('Matching tractograms in rasmm!')
    else:
        print('Average difference in rasmm of {}'.format(np.average(
            sft_1.streamlines._data - sft_2.streamlines._data, axis=0)))

    sft_1.to_voxmm()
    sft_2.to_voxmm()
    if np.allclose(sft_1.streamlines._data, sft_2.streamlines._data,
                   atol=0.001):
        print('Matching tractograms in voxmm!')
    else:
        print('Average difference in voxmm of {}'.format(np.average(
            sft_1.streamlines._data - sft_2.streamlines._data, axis=0)))

    sft_1.to_vox()
    sft_2.to_vox()
    if np.allclose(sft_1.streamlines._data, sft_2.streamlines._data,
                   atol=0.001):
        print('Matching tractograms in vox!')
    else:
        print('Average difference in vox of {}'.format(np.average(
            sft_1.streamlines._data - sft_2.streamlines._data, axis=0)))


def verify_header_compatibility(in_files):
    if not dipy_available:
        logging.error('Dipy library is missing, scripts are not available.')
        return

    all_valid = True
    for filepath in in_files:
        if not os.path.isfile(filepath):
            print('{} does not exist'.format(filepath))
        _, in_extension = split_name_with_gz(filepath)
        if in_extension not in ['.trk', '.nii', '.nii.gz', '.trx']:
            raise IOError('{} does not have a supported extension'.format(
                filepath))
        if not is_header_compatible(in_files[0], filepath):
            print('{} and {} do not have compatible header.'.format(
                in_files[0], filepath))
            all_valid = False
    if all_valid:
        print('All input files have compatible headers.')


def tractogram_visualize_overlap(in_tractogram, reference, remove_invalid=True):
    if not dipy_available:
        logging.error('Dipy library is missing, scripts are not available.')
        return None
    from dipy.io.stateful_tractogram import StatefulTractogram
    from dipy.tracking.streamline import set_number_of_points
    from dipy.tracking.utils import density_map

    tractogram_obj = load(in_tractogram, reference)
    if not isinstance(tractogram_obj, StatefulTractogram):
        sft = tractogram_obj.to_sft()
        tractogram_obj.close()
    else:
        sft = tractogram_obj
    sft.streamlines._data = sft.streamlines._data.astype(float)

    sft.data_per_point = None
    sft.streamlines = set_number_of_points(sft.streamlines, 200)

    if remove_invalid:
        sft.remove_invalid_streamlines()

    # Approach (1)
    density_1 = density_map(sft.streamlines, sft.affine, sft.dimensions)
    img = nib.load(reference)
    display(img.get_fdata(), volume_affine=img.affine,
            streamlines=sft.streamlines,  title='RASMM')

    # Approach (2)
    sft.to_vox()
    density_2 = density_map(sft.streamlines, np.eye(4), sft.dimensions)

    # Small difference due to casting of the affine as float32 or float64
    diff = density_1 - density_2
    print('Total difference of {} voxels with total value of {}'.format(
        np.count_nonzero(diff), np.sum(np.abs(diff))))

    display(img.get_fdata(), streamlines=sft.streamlines, title='VOX')

    # Try VOXMM
    sft.to_voxmm()
    affine = np.eye(4)
    affine[0:3, 0:3] *= sft.voxel_sizes

    display(img.get_fdata(), volume_affine=affine,
            streamlines=sft.streamlines,  title='VOXMM')


def validate_tractogram(in_tractogram, reference, out_tractogram,
                        remove_identical_streamlines=True, precision=1):

    if not dipy_available:
        logging.error('Dipy library is missing, scripts are not available.')
        return None
    from dipy.io.stateful_tractogram import StatefulTractogram

    tractogram_obj = load(in_tractogram, reference)

    if not isinstance(tractogram_obj, StatefulTractogram):
        sft = tractogram_obj.to_sft()
        # tractogram_obj.close()
    else:
        sft = tractogram_obj

    ori_dtype = sft.dtype_dict
    ori_len = len(sft)
    tot_remove = 0

    invalid_coord_ind, _ = sft.remove_invalid_streamlines()
    tot_remove += len(invalid_coord_ind)
    logging.warning('Removed {} streamlines with invalid coordinates.'.format(
        len(invalid_coord_ind)))

    indices = [i for i in range(len(sft)) if len(sft.streamlines[i]) <= 1]
    tot_remove = + len(indices)
    logging.warning('Removed {} invalid streamlines (1 or 0 points).'.format(
        len(indices)))

    for i in np.setdiff1d(range(len(sft)), indices):
        norm = np.linalg.norm(np.diff(sft.streamlines[i],
                                      axis=0), axis=1)

        if (norm < 0.001).any():
            indices.append(i)

    indices_val = np.setdiff1d(range(len(sft)), indices).astype(np.uint32)
    logging.warning('Removed {} invalid streamlines (overlapping points).'.format(
        ori_len - len(indices_val)))
    tot_remove += ori_len - len(indices_val)

    if remove_identical_streamlines:
        _, indices_uniq = perform_streamlines_operation(intersection,
                                                        [sft.streamlines],
                                                        precision=precision)
        indices_final = np.intersect1d(
            indices_val, indices_uniq).astype(np.uint32)
        logging.warning('Removed {} overlapping streamlines.'.format(
            ori_len - len(indices_final) - tot_remove))

        indices_final = np.intersect1d(indices_val, indices_uniq)
    else:
        indices_final = indices_val

    if out_tractogram:
        streamlines = sft.streamlines[indices_final].copy()
        dpp = {}
        for key in sft.data_per_point.keys():
            dpp[key] = sft.data_per_point[key][indices_final].copy()

        dps = {}
        for key in sft.data_per_streamline.keys():
            dps[key] = sft.data_per_streamline[key][indices_final]
        new_sft = StatefulTractogram.from_sft(streamlines, sft,
                                              data_per_point=dpp,
                                              data_per_streamline=dps)
        new_sft.dtype_dict = ori_dtype
        save(new_sft, out_tractogram)


def generate_trx_from_scratch(reference, out_tractogram, positions_csv=False,
                              positions=False, offsets=False,
                              positions_dtype='float32', offsets_dtype='uint64',
                              space_str='rasmm', origin_str='nifti',
                              verify_invalid=True, dpv=[], dps=[],
                              groups=[], dpg=[]):
    with get_trx_tmp_dir() as tmp_dir_name:
        if positions_csv:
            with open(positions_csv, newline='') as f:
                reader = csv.reader(f)
                data = list(reader)
                data = [np.reshape(i, (len(i) // 3, 3)).astype(float)
                        for i in data]
                streamlines = ArraySequence(data)
        else:
            positions = load_matrix_in_any_format(positions)
            offsets = load_matrix_in_any_format(offsets)
            lengths = tmm._compute_lengths(offsets)
            streamlines = ArraySequence()
            streamlines._data = positions
            streamlines._offsets = deepcopy(offsets)
            streamlines._lengths = lengths

        if space_str.lower() != 'rasmm' or origin_str.lower() != 'nifti' or \
                verify_invalid:
            if not dipy_available:
                logging.error('Dipy library is missing, advanced options '
                              'related to spatial transforms and invalid '
                              'streamlines are not available.')
                return
            from dipy.io.stateful_tractogram import StatefulTractogram

            space, origin = get_reverse_enum(space_str, origin_str)
            sft = StatefulTractogram(streamlines, reference, space, origin)
            if verify_invalid:
                rem, _ = sft.remove_invalid_streamlines()
                print('{} streamlines were removed becaused they were '
                      'invalid.'.format(len(rem)))
            sft.to_rasmm()
            sft.to_center()
            streamlines = sft.streamlines
            streamlines._offsets = offsets

        affine, dimensions, _, _ = get_reference_info_wrapper(reference)
        header = {
            "DIMENSIONS": dimensions.tolist(),
            "VOXEL_TO_RASMM": affine.tolist(),
            "NB_VERTICES": len(streamlines._data),
            "NB_STREAMLINES": len(streamlines)-1,
        }

        if header['NB_STREAMLINES'] <= 1:
            raise IOError('To use this script, you need at least 2'
                          'streamlines.')

        with open(os.path.join(tmp_dir_name, "header.json"), "w") as out_json:
            json.dump(header, out_json)

        curr_filename = os.path.join(tmp_dir_name, 'positions.3.{}'.format(
            positions_dtype))
        streamlines._data.astype(positions_dtype).tofile(
            curr_filename)
        curr_filename = os.path.join(tmp_dir_name, 'offsets.{}'.format(
            offsets_dtype))
        streamlines._offsets.astype(offsets_dtype).tofile(
            curr_filename)

        if dpv:
            os.mkdir(os.path.join(tmp_dir_name, 'dpv'))
            for arg in dpv:
                curr_arr = np.squeeze(load_matrix_in_any_format(arg[0]).astype(
                    arg[1]))
                if arg[1] == 'bool':
                    arg[1] = 'bit'
                if curr_arr.ndim > 2:
                    raise IOError('Maximum of 2 dimensions for dpv/dps/dpg.')
                dim = '' if curr_arr.ndim == 1 else '{}.'.format(
                    curr_arr.shape[-1])
                curr_filename = os.path.join(tmp_dir_name, 'dpv', '{}.{}{}'.format(
                    os.path.basename(os.path.splitext(arg[0])[0]), dim, arg[1]))
                curr_arr.tofile(curr_filename)

        if dps:
            os.mkdir(os.path.join(tmp_dir_name, 'dps'))
            for arg in dps:
                curr_arr = np.squeeze(load_matrix_in_any_format(arg[0]).astype(
                    arg[1]))
                if arg[1] == 'bool':
                    arg[1] = 'bit'
                if curr_arr.ndim > 2:
                    raise IOError('Maximum of 2 dimensions for dpv/dps/dpg.')
                dim = '' if curr_arr.ndim == 1 else '{}.'.format(
                    curr_arr.shape[-1])
                curr_filename = os.path.join(tmp_dir_name, 'dps', '{}.{}{}'.format(
                    os.path.basename(os.path.splitext(arg[0])[0]), dim, arg[1]))
                curr_arr.tofile(curr_filename)
        if groups:
            os.mkdir(os.path.join(tmp_dir_name, 'groups'))
            for arg in groups:
                curr_arr = load_matrix_in_any_format(arg[0]).astype(arg[1])
                if arg[1] == 'bool':
                    arg[1] = 'bit'
                if curr_arr.ndim > 2:
                    raise IOError('Maximum of 2 dimensions for dpv/dps/dpg.')
                dim = '' if curr_arr.ndim == 1 else '{}.'.format(
                    curr_arr.shape[-1])
                curr_filename = os.path.join(tmp_dir_name, 'groups', '{}.{}{}'.format(
                    os.path.basename(os.path.splitext(arg[0])[0]), dim, arg[1]))
                curr_arr.tofile(curr_filename)

        if dpg:
            os.mkdir(os.path.join(tmp_dir_name, 'dpg'))
            for arg in dpg:
                if not os.path.isdir(os.path.join(tmp_dir_name, 'dpg', arg[0])):
                    os.mkdir(os.path.join(tmp_dir_name, 'dpg', arg[0]))
                curr_arr = load_matrix_in_any_format(arg[1]).astype(arg[2])
                if arg[1] == 'bool':
                    arg[1] = 'bit'
                if curr_arr.ndim > 2:
                    raise IOError('Maximum of 2 dimensions for dpv/dps/dpg.')
                if curr_arr.shape == (1, 1):
                    curr_arr = curr_arr.reshape((1,))
                dim = '' if curr_arr.ndim == 1 else '{}.'.format(
                    curr_arr.shape[-1])
                curr_filename = os.path.join(tmp_dir_name, 'dpg', arg[0], '{}.{}{}'.format(
                    os.path.basename(os.path.splitext(arg[1])[0]), dim, arg[2]))
                curr_arr.tofile(curr_filename)

        trx = tmm.load(tmp_dir_name)
        tmm.save(trx, out_tractogram)
        trx.close()


def manipulate_trx_datatype(in_filename, out_filename, dict_dtype):
    trx = tmm.load(in_filename)

    # For each key in dict_dtype, we create a new memmap with the new dtype
    # and we copy the data from the old memmap to the new one.
    for key in dict_dtype:
        if key == 'positions':
            tmp_mm = np.memmap(tempfile.NamedTemporaryFile(),
                               dtype=dict_dtype[key],
                               mode='w+',
                               shape=trx.streamlines._data.shape)
            tmp_mm[:] = trx.streamlines._data[:]
            trx.streamlines._data = tmp_mm
        elif key == 'offsets':
            tmp_mm = np.memmap(tempfile.NamedTemporaryFile(),
                               dtype=dict_dtype[key],
                               mode='w+',
                               shape=trx.streamlines._offsets.shape)
            tmp_mm[:] = trx.streamlines._offsets[:]
            trx.streamlines._offsets = tmp_mm
        elif key == 'dpv':
            for key_dpv in dict_dtype[key]:
                tmp_mm = np.memmap(tempfile.NamedTemporaryFile(),
                                   dtype=dict_dtype[key][key_dpv],
                                   mode='w+',
                                   shape=trx.data_per_vertex[key_dpv]._data.shape)
                tmp_mm[:] = trx.data_per_vertex[key_dpv]._data[:]
                trx.data_per_vertex[key_dpv]._data = tmp_mm
        elif key == 'dps':
            for key_dps in dict_dtype[key]:
                tmp_mm = np.memmap(tempfile.NamedTemporaryFile(),
                                   dtype=dict_dtype[key][key_dps],
                                   mode='w+',
                                   shape=trx.data_per_streamline[key_dps].shape)
                tmp_mm[:] = trx.data_per_streamline[key_dps][:]
                trx.data_per_streamline[key_dps] = tmp_mm
        elif key == 'dpg':
            for key_group in dict_dtype[key]:
                for key_dpg in dict_dtype[key][key_group]:
                    tmp_mm = np.memmap(tempfile.NamedTemporaryFile(),
                                       dtype=dict_dtype[key][key_group][key_dpg],
                                       mode='w+',
                                       shape=trx.data_per_group[key_group][key_dpg].shape)
                    tmp_mm[:] = trx.data_per_group[key_group][key_dpg][:]
                    trx.data_per_group[key_group][key_dpg] = tmp_mm
        elif key == 'groups':
            for key_group in dict_dtype[key]:
                tmp_mm = np.memmap(tempfile.NamedTemporaryFile(),
                                   dtype=dict_dtype[key][key_group],
                                   mode='w+',
                                   shape=trx.groups[key_group].shape)
                tmp_mm[:] = trx.groups[key_group][:]
                trx.groups[key_group] = tmp_mm

    tmm.save(trx, out_filename)
    trx.close()