1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
|
"""Defines experimental API for runtime inspection of types defined
in the standard "typing" module.
Example usage::
from typing_inspect import is_generic_type
"""
# NOTE: This module must support Python 2.7 in addition to Python 3.x
import sys
import types
import typing
import typing_extensions
from mypy_extensions import _TypedDictMeta as _TypedDictMeta_Mypy
# See comments in typing_extensions source on why the switch is at 3.9.2
if (3, 4, 0) <= sys.version_info[:3] < (3, 9, 2):
from typing_extensions import _TypedDictMeta as _TypedDictMeta_TE
elif sys.version_info[:3] >= (3, 9, 2):
# Situation with typing_extensions.TypedDict is complicated.
# Use the one defined in typing_extentions, and if there is none,
# fall back to typing.
try:
from typing_extensions import _TypedDictMeta as _TypedDictMeta_TE
except ImportError:
from typing import _TypedDictMeta as _TypedDictMeta_TE
else:
# typing_extensions.TypedDict is a re-export from typing.
from typing import TypedDict
_TypedDictMeta_TE = type(TypedDict)
NEW_TYPING = sys.version_info[:3] >= (3, 7, 0) # PEP 560
if NEW_TYPING:
import collections.abc
WITH_FINAL = True
WITH_LITERAL = True
WITH_CLASSVAR = True
WITH_NEWTYPE = True
LEGACY_TYPING = False
if NEW_TYPING:
from typing import (
Generic, Callable, Union, TypeVar, ClassVar, Tuple, _GenericAlias,
ForwardRef, NewType,
)
from typing_extensions import Final, Literal
if sys.version_info[:3] >= (3, 9, 0):
from typing import _SpecialGenericAlias
typingGenericAlias = (_GenericAlias, _SpecialGenericAlias, types.GenericAlias)
else:
typingGenericAlias = (_GenericAlias,)
else:
from typing import (
Callable, CallableMeta, Union, Tuple, TupleMeta, TypeVar, GenericMeta,
_ForwardRef,
)
try:
from typing import _Union, _ClassVar
except ImportError:
# support for very old typing module <=3.5.3
_Union = type(Union)
WITH_CLASSVAR = False
LEGACY_TYPING = True
try: # python 3.6
from typing_extensions import _Final
except ImportError: # python 2.7
try:
from typing import _Final
except ImportError:
WITH_FINAL = False
try: # python 3.6
from typing_extensions import Literal
except ImportError: # python 2.7
try:
from typing import Literal
except ImportError:
WITH_LITERAL = False
try: # python < 3.5.2
from typing_extensions import NewType
except ImportError:
try:
from typing import NewType
except ImportError:
WITH_NEWTYPE = False
def _gorg(cls):
"""This function exists for compatibility with old typing versions."""
assert isinstance(cls, GenericMeta)
if hasattr(cls, '_gorg'):
return cls._gorg
while cls.__origin__ is not None:
cls = cls.__origin__
return cls
def is_generic_type(tp):
"""Test if the given type is a generic type. This includes Generic itself, but
excludes special typing constructs such as Union, Tuple, Callable, ClassVar.
Examples::
is_generic_type(int) == False
is_generic_type(Union[int, str]) == False
is_generic_type(Union[int, T]) == False
is_generic_type(ClassVar[List[int]]) == False
is_generic_type(Callable[..., T]) == False
is_generic_type(Generic) == True
is_generic_type(Generic[T]) == True
is_generic_type(Iterable[int]) == True
is_generic_type(Mapping) == True
is_generic_type(MutableMapping[T, List[int]]) == True
is_generic_type(Sequence[Union[str, bytes]]) == True
"""
if NEW_TYPING:
return (isinstance(tp, type) and issubclass(tp, Generic) or
isinstance(tp, typingGenericAlias) and
tp.__origin__ not in (Union, tuple, ClassVar, collections.abc.Callable))
return (isinstance(tp, GenericMeta) and not
isinstance(tp, (CallableMeta, TupleMeta)))
def is_callable_type(tp):
"""Test if the type is a generic callable type, including subclasses
excluding non-generic types and callables.
Examples::
is_callable_type(int) == False
is_callable_type(type) == False
is_callable_type(Callable) == True
is_callable_type(Callable[..., int]) == True
is_callable_type(Callable[[int, int], Iterable[str]]) == True
class MyClass(Callable[[int], int]):
...
is_callable_type(MyClass) == True
For more general tests use callable(), for more precise test
(excluding subclasses) use::
get_origin(tp) is collections.abc.Callable # Callable prior to Python 3.7
"""
if NEW_TYPING:
return (tp is Callable or isinstance(tp, typingGenericAlias) and
tp.__origin__ is collections.abc.Callable or
isinstance(tp, type) and issubclass(tp, Generic) and
issubclass(tp, collections.abc.Callable))
return type(tp) is CallableMeta
def is_tuple_type(tp):
"""Test if the type is a generic tuple type, including subclasses excluding
non-generic classes.
Examples::
is_tuple_type(int) == False
is_tuple_type(tuple) == False
is_tuple_type(Tuple) == True
is_tuple_type(Tuple[str, int]) == True
class MyClass(Tuple[str, int]):
...
is_tuple_type(MyClass) == True
For more general tests use issubclass(..., tuple), for more precise test
(excluding subclasses) use::
get_origin(tp) is tuple # Tuple prior to Python 3.7
"""
if NEW_TYPING:
return (tp is Tuple or isinstance(tp, typingGenericAlias) and
tp.__origin__ is tuple or
isinstance(tp, type) and issubclass(tp, Generic) and
issubclass(tp, tuple))
return type(tp) is TupleMeta
def is_optional_type(tp):
"""Test if the type is type(None), or is a direct union with it, such as Optional[T].
NOTE: this method inspects nested `Union` arguments but not `TypeVar` definition
bounds and constraints. So it will return `False` if
- `tp` is a `TypeVar` bound, or constrained to, an optional type
- `tp` is a `Union` to a `TypeVar` bound or constrained to an optional type,
- `tp` refers to a *nested* `Union` containing an optional type or one of the above.
Users wishing to check for optionality in types relying on type variables might wish
to use this method in combination with `get_constraints` and `get_bound`
"""
if tp is type(None): # noqa
return True
elif is_union_type(tp):
return any(is_optional_type(tt) for tt in get_args(tp, evaluate=True))
else:
return False
def is_final_type(tp):
"""Test if the type is a final type. Examples::
is_final_type(int) == False
is_final_type(Final) == True
is_final_type(Final[int]) == True
"""
if NEW_TYPING:
return (tp is Final or
isinstance(tp, typingGenericAlias) and tp.__origin__ is Final)
return WITH_FINAL and type(tp) is _Final
try:
MaybeUnionType = types.UnionType
except AttributeError:
MaybeUnionType = None
def is_union_type(tp):
"""Test if the type is a union type. Examples::
is_union_type(int) == False
is_union_type(Union) == True
is_union_type(Union[int, int]) == False
is_union_type(Union[T, int]) == True
is_union_type(int | int) == False
is_union_type(T | int) == True
"""
if NEW_TYPING:
return (tp is Union or
(isinstance(tp, typingGenericAlias) and tp.__origin__ is Union) or
(MaybeUnionType and isinstance(tp, MaybeUnionType)))
return type(tp) is _Union
LITERALS = {Literal}
if hasattr(typing, "Literal"):
LITERALS.add(typing.Literal)
def is_literal_type(tp):
if NEW_TYPING:
return (tp in LITERALS or
isinstance(tp, typingGenericAlias) and tp.__origin__ in LITERALS)
return WITH_LITERAL and type(tp) is type(Literal)
def is_typevar(tp):
"""Test if the type represents a type variable. Examples::
is_typevar(int) == False
is_typevar(T) == True
is_typevar(Union[T, int]) == False
"""
return type(tp) is TypeVar
def is_classvar(tp):
"""Test if the type represents a class variable. Examples::
is_classvar(int) == False
is_classvar(ClassVar) == True
is_classvar(ClassVar[int]) == True
is_classvar(ClassVar[List[T]]) == True
"""
if NEW_TYPING:
return (tp is ClassVar or
isinstance(tp, typingGenericAlias) and tp.__origin__ is ClassVar)
elif WITH_CLASSVAR:
return type(tp) is _ClassVar
else:
return False
def is_new_type(tp):
"""Tests if the type represents a distinct type. Examples::
is_new_type(int) == False
is_new_type(NewType) == True
is_new_type(NewType('Age', int)) == True
is_new_type(NewType('Scores', List[Dict[str, float]])) == True
"""
if not WITH_NEWTYPE:
return False
elif sys.version_info[:3] >= (3, 10, 0) and sys.version_info.releaselevel != 'beta':
return (tp in (NewType, typing_extensions.NewType) or
isinstance(tp, (NewType, typing_extensions.NewType)))
elif sys.version_info[:3] >= (3, 0, 0):
try:
res = isinstance(tp, typing_extensions.NewType)
except TypeError:
pass
else:
if res:
return res
return (tp in (NewType, typing_extensions.NewType) or
(getattr(tp, '__supertype__', None) is not None and
getattr(tp, '__qualname__', '') == 'NewType.<locals>.new_type' and
tp.__module__ in ('typing', 'typing_extensions')))
else: # python 2
# __qualname__ is not available in python 2, so we simplify the test here
return (tp is NewType or
(getattr(tp, '__supertype__', None) is not None and
tp.__module__ in ('typing', 'typing_extensions')))
def is_forward_ref(tp):
"""Tests if the type is a :class:`typing.ForwardRef`. Examples::
u = Union["Milk", Way]
args = get_args(u)
is_forward_ref(args[0]) == True
is_forward_ref(args[1]) == False
"""
if not NEW_TYPING:
return isinstance(tp, _ForwardRef)
return isinstance(tp, ForwardRef)
def get_last_origin(tp):
"""Get the last base of (multiply) subscripted type. Supports generic types,
Union, Callable, and Tuple. Returns None for unsupported types.
Examples::
get_last_origin(int) == None
get_last_origin(ClassVar[int]) == None
get_last_origin(Generic[T]) == Generic
get_last_origin(Union[T, int][str]) == Union[T, int]
get_last_origin(List[Tuple[T, T]][int]) == List[Tuple[T, T]]
get_last_origin(List) == List
"""
if NEW_TYPING:
raise ValueError('This function is only supported in Python 3.6,'
' use get_origin instead')
sentinel = object()
origin = getattr(tp, '__origin__', sentinel)
if origin is sentinel:
return None
if origin is None:
return tp
return origin
def get_origin(tp):
"""Get the unsubscripted version of a type. Supports generic types, Union,
Callable, and Tuple. Returns None for unsupported types. Examples::
get_origin(int) == None
get_origin(ClassVar[int]) == None
get_origin(Generic) == Generic
get_origin(Generic[T]) == Generic
get_origin(Union[T, int]) == Union
get_origin(List[Tuple[T, T]][int]) == list # List prior to Python 3.7
"""
if NEW_TYPING:
if isinstance(tp, typingGenericAlias):
return tp.__origin__ if tp.__origin__ is not ClassVar else None
if tp is Generic:
return Generic
return None
if isinstance(tp, GenericMeta):
return _gorg(tp)
if is_union_type(tp):
return Union
if is_tuple_type(tp):
return Tuple
if is_literal_type(tp):
if NEW_TYPING:
return tp.__origin__ or tp
return Literal
return None
def get_parameters(tp):
"""Return type parameters of a parameterizable type as a tuple
in lexicographic order. Parameterizable types are generic types,
unions, tuple types and callable types. Examples::
get_parameters(int) == ()
get_parameters(Generic) == ()
get_parameters(Union) == ()
get_parameters(List[int]) == ()
get_parameters(Generic[T]) == (T,)
get_parameters(Tuple[List[T], List[S_co]]) == (T, S_co)
get_parameters(Union[S_co, Tuple[T, T]][int, U]) == (U,)
get_parameters(Mapping[T, Tuple[S_co, T]]) == (T, S_co)
"""
if LEGACY_TYPING:
# python <= 3.5.2
if is_union_type(tp):
params = []
for arg in (tp.__union_params__ if tp.__union_params__ is not None else ()):
params += get_parameters(arg)
return tuple(params)
elif is_tuple_type(tp):
params = []
for arg in (tp.__tuple_params__ if tp.__tuple_params__ is not None else ()):
params += get_parameters(arg)
return tuple(params)
elif is_generic_type(tp):
params = []
base_params = tp.__parameters__
if base_params is None:
return ()
for bp_ in base_params:
for bp in (get_args(bp_) if is_tuple_type(bp_) else (bp_,)):
if _has_type_var(bp) and not isinstance(bp, TypeVar):
raise TypeError(
"Cannot inherit from a generic class "
"parameterized with "
"non-type-variable %s" % bp)
if params is None:
params = []
if bp not in params:
params.append(bp)
if params is not None:
return tuple(params)
else:
return ()
else:
return ()
elif NEW_TYPING:
if (
(
isinstance(tp, typingGenericAlias) and
hasattr(tp, '__parameters__')
) or
isinstance(tp, type) and issubclass(tp, Generic) and
tp is not Generic):
return tp.__parameters__
else:
return ()
elif (
is_generic_type(tp) or is_union_type(tp) or
is_callable_type(tp) or is_tuple_type(tp)
):
return tp.__parameters__ if tp.__parameters__ is not None else ()
else:
return ()
def get_last_args(tp):
"""Get last arguments of (multiply) subscripted type.
Parameters for Callable are flattened. Examples::
get_last_args(int) == ()
get_last_args(Union) == ()
get_last_args(ClassVar[int]) == (int,)
get_last_args(Union[T, int]) == (T, int)
get_last_args(Iterable[Tuple[T, S]][int, T]) == (int, T)
get_last_args(Callable[[T], int]) == (T, int)
get_last_args(Callable[[], int]) == (int,)
"""
if NEW_TYPING:
raise ValueError('This function is only supported in Python 3.6,'
' use get_args instead')
elif is_classvar(tp):
return (tp.__type__,) if tp.__type__ is not None else ()
elif is_generic_type(tp):
try:
if tp.__args__ is not None and len(tp.__args__) > 0:
return tp.__args__
except AttributeError:
# python 3.5.1
pass
return tp.__parameters__ if tp.__parameters__ is not None else ()
elif is_union_type(tp):
try:
return tp.__args__ if tp.__args__ is not None else ()
except AttributeError:
# python 3.5.2
return tp.__union_params__ if tp.__union_params__ is not None else ()
elif is_callable_type(tp):
return tp.__args__ if tp.__args__ is not None else ()
elif is_tuple_type(tp):
try:
return tp.__args__ if tp.__args__ is not None else ()
except AttributeError:
# python 3.5.2
return tp.__tuple_params__ if tp.__tuple_params__ is not None else ()
else:
return ()
def _eval_args(args):
"""Internal helper for get_args."""
res = []
for arg in args:
if not isinstance(arg, tuple):
res.append(arg)
elif is_callable_type(arg[0]):
callable_args = _eval_args(arg[1:])
if len(arg) == 2:
res.append(Callable[[], callable_args[0]])
elif arg[1] is Ellipsis:
res.append(Callable[..., callable_args[1]])
else:
res.append(Callable[list(callable_args[:-1]), callable_args[-1]])
else:
res.append(type(arg[0]).__getitem__(arg[0], _eval_args(arg[1:])))
return tuple(res)
def get_args(tp, evaluate=None):
"""Get type arguments with all substitutions performed. For unions,
basic simplifications used by Union constructor are performed.
On versions prior to 3.7 if `evaluate` is False (default),
report result as nested tuple, this matches
the internal representation of types. If `evaluate` is True
(or if Python version is 3.7 or greater), then all
type parameters are applied (this could be time and memory expensive).
Examples::
get_args(int) == ()
get_args(Union[int, Union[T, int], str][int]) == (int, str)
get_args(Union[int, Tuple[T, int]][str]) == (int, (Tuple, str, int))
get_args(Union[int, Tuple[T, int]][str], evaluate=True) == \
(int, Tuple[str, int])
get_args(Dict[int, Tuple[T, T]][Optional[int]], evaluate=True) == \
(int, Tuple[Optional[int], Optional[int]])
get_args(Callable[[], T][int], evaluate=True) == ([], int,)
"""
if NEW_TYPING:
if evaluate is not None and not evaluate:
raise ValueError('evaluate can only be True in Python >= 3.7')
# Note special aliases on Python 3.9 don't have __args__.
if isinstance(tp, typingGenericAlias) and hasattr(tp, '__args__'):
res = tp.__args__
if get_origin(tp) is collections.abc.Callable and res[0] is not Ellipsis:
res = (list(res[:-1]), res[-1])
return res
if MaybeUnionType and isinstance(tp, MaybeUnionType):
return tp.__args__
return ()
if is_classvar(tp) or is_final_type(tp):
return (tp.__type__,) if tp.__type__ is not None else ()
if is_literal_type(tp):
return tp.__values__ or ()
if (
is_generic_type(tp) or is_union_type(tp) or
is_callable_type(tp) or is_tuple_type(tp)
):
try:
tree = tp._subs_tree()
except AttributeError:
# Old python typing module <= 3.5.3
if is_union_type(tp):
# backport of union's subs_tree
tree = _union_subs_tree(tp)
elif is_generic_type(tp):
# backport of GenericMeta's subs_tree
tree = _generic_subs_tree(tp)
elif is_tuple_type(tp):
# ad-hoc (inspired by union)
tree = _tuple_subs_tree(tp)
else:
# tree = _subs_tree(tp)
return ()
if isinstance(tree, tuple) and len(tree) > 1:
if not evaluate:
return tree[1:]
res = _eval_args(tree[1:])
if get_origin(tp) is Callable and res[0] is not Ellipsis:
res = (list(res[:-1]), res[-1])
return res
return ()
def get_bound(tp):
"""Return the type bound to a `TypeVar` if any.
It the type is not a `TypeVar`, a `TypeError` is raised.
Examples::
get_bound(TypeVar('T')) == None
get_bound(TypeVar('T', bound=int)) == int
"""
if is_typevar(tp):
return getattr(tp, '__bound__', None)
else:
raise TypeError("type is not a `TypeVar`: " + str(tp))
def get_constraints(tp):
"""Returns the constraints of a `TypeVar` if any.
It the type is not a `TypeVar`, a `TypeError` is raised
Examples::
get_constraints(TypeVar('T')) == ()
get_constraints(TypeVar('T', int, str)) == (int, str)
"""
if is_typevar(tp):
return getattr(tp, '__constraints__', ())
else:
raise TypeError("type is not a `TypeVar`: " + str(tp))
def get_generic_type(obj):
"""Get the generic type of an object if possible, or runtime class otherwise.
Examples::
class Node(Generic[T]):
...
type(Node[int]()) == Node
get_generic_type(Node[int]()) == Node[int]
get_generic_type(Node[T]()) == Node[T]
get_generic_type(1) == int
"""
gen_type = getattr(obj, '__orig_class__', None)
return gen_type if gen_type is not None else type(obj)
def get_generic_bases(tp):
"""Get generic base types of a type or empty tuple if not possible.
Example::
class MyClass(List[int], Mapping[str, List[int]]):
...
MyClass.__bases__ == (List, Mapping)
get_generic_bases(MyClass) == (List[int], Mapping[str, List[int]])
"""
if LEGACY_TYPING:
return tuple(t for t in tp.__bases__ if isinstance(t, GenericMeta))
else:
return getattr(tp, '__orig_bases__', ())
def typed_dict_keys(td):
"""If td is a TypedDict class, return a dictionary mapping the typed keys to types.
Otherwise, return None. Examples::
class TD(TypedDict):
x: int
y: int
class Other(dict):
x: int
y: int
typed_dict_keys(TD) == {'x': int, 'y': int}
typed_dict_keys(dict) == None
typed_dict_keys(Other) == None
"""
if isinstance(td, (_TypedDictMeta_Mypy, _TypedDictMeta_TE)):
return td.__annotations__.copy()
return None
def get_forward_arg(fr):
"""
If fr is a ForwardRef, return the string representation of the forward reference.
Otherwise return None. Examples::
tp = List["FRef"]
fr = get_args(tp)[0]
get_forward_arg(fr) == "FRef"
get_forward_arg(tp) == None
"""
return fr.__forward_arg__ if is_forward_ref(fr) else None
# A few functions backported and adapted for the LEGACY_TYPING context, and used above
def _replace_arg(arg, tvars, args):
"""backport of _replace_arg"""
if tvars is None:
tvars = []
# if hasattr(arg, '_subs_tree') and isinstance(arg, (GenericMeta, _TypingBase)):
# return arg._subs_tree(tvars, args)
if is_union_type(arg):
return _union_subs_tree(arg, tvars, args)
if is_tuple_type(arg):
return _tuple_subs_tree(arg, tvars, args)
if is_generic_type(arg):
return _generic_subs_tree(arg, tvars, args)
if isinstance(arg, TypeVar):
for i, tvar in enumerate(tvars):
if arg == tvar:
return args[i]
return arg
def _remove_dups_flatten(parameters):
"""backport of _remove_dups_flatten"""
# Flatten out Union[Union[...], ...].
params = []
for p in parameters:
if isinstance(p, _Union): # and p.__origin__ is Union:
params.extend(p.__union_params__) # p.__args__)
elif isinstance(p, tuple) and len(p) > 0 and p[0] is Union:
params.extend(p[1:])
else:
params.append(p)
# Weed out strict duplicates, preserving the first of each occurrence.
all_params = set(params)
if len(all_params) < len(params):
new_params = []
for t in params:
if t in all_params:
new_params.append(t)
all_params.remove(t)
params = new_params
assert not all_params, all_params
# Weed out subclasses.
# E.g. Union[int, Employee, Manager] == Union[int, Employee].
# If object is present it will be sole survivor among proper classes.
# Never discard type variables.
# (In particular, Union[str, AnyStr] != AnyStr.)
all_params = set(params)
for t1 in params:
if not isinstance(t1, type):
continue
if any(isinstance(t2, type) and issubclass(t1, t2)
for t2 in all_params - {t1}
if (not (isinstance(t2, GenericMeta) and
get_origin(t2) is not None) and
not isinstance(t2, TypeVar))):
all_params.remove(t1)
return tuple(t for t in params if t in all_params)
def _subs_tree(cls, tvars=None, args=None):
"""backport of typing._subs_tree, adapted for legacy versions """
def _get_origin(cls):
try:
return cls.__origin__
except AttributeError:
return None
current = _get_origin(cls)
if current is None:
if not is_union_type(cls) and not is_tuple_type(cls):
return cls
# Make of chain of origins (i.e. cls -> cls.__origin__)
orig_chain = []
while _get_origin(current) is not None:
orig_chain.append(current)
current = _get_origin(current)
# Replace type variables in __args__ if asked ...
tree_args = []
def _get_args(cls):
if is_union_type(cls):
cls_args = cls.__union_params__
elif is_tuple_type(cls):
cls_args = cls.__tuple_params__
else:
try:
cls_args = cls.__args__
except AttributeError:
cls_args = ()
return cls_args if cls_args is not None else ()
for arg in _get_args(cls):
tree_args.append(_replace_arg(arg, tvars, args))
# ... then continue replacing down the origin chain.
for ocls in orig_chain:
new_tree_args = []
for arg in _get_args(ocls):
new_tree_args.append(_replace_arg(arg, get_parameters(ocls), tree_args))
tree_args = new_tree_args
return tree_args
def _union_subs_tree(tp, tvars=None, args=None):
""" backport of Union._subs_tree """
if tp is Union:
return Union # Nothing to substitute
tree_args = _subs_tree(tp, tvars, args)
# tree_args = tp.__union_params__ if tp.__union_params__ is not None else ()
tree_args = _remove_dups_flatten(tree_args)
if len(tree_args) == 1:
return tree_args[0] # Union of a single type is that type
return (Union,) + tree_args
def _generic_subs_tree(tp, tvars=None, args=None):
""" backport of GenericMeta._subs_tree """
if tp.__origin__ is None:
return tp
tree_args = _subs_tree(tp, tvars, args)
return (_gorg(tp),) + tuple(tree_args)
def _tuple_subs_tree(tp, tvars=None, args=None):
""" ad-hoc function (inspired by union) for legacy typing """
if tp is Tuple:
return Tuple # Nothing to substitute
tree_args = _subs_tree(tp, tvars, args)
return (Tuple,) + tuple(tree_args)
def _has_type_var(t):
if t is None:
return False
elif is_union_type(t):
return _union_has_type_var(t)
elif is_tuple_type(t):
return _tuple_has_type_var(t)
elif is_generic_type(t):
return _generic_has_type_var(t)
elif is_callable_type(t):
return _callable_has_type_var(t)
else:
return False
def _union_has_type_var(tp):
if tp.__union_params__:
for t in tp.__union_params__:
if _has_type_var(t):
return True
return False
def _tuple_has_type_var(tp):
if tp.__tuple_params__:
for t in tp.__tuple_params__:
if _has_type_var(t):
return True
return False
def _callable_has_type_var(tp):
if tp.__args__:
for t in tp.__args__:
if _has_type_var(t):
return True
return _has_type_var(tp.__result__)
def _generic_has_type_var(tp):
if tp.__parameters__:
for t in tp.__parameters__:
if _has_type_var(t):
return True
return False
|