1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
"""
ulmo.lcra.hydromet.core
~~~~~~~~~~~~~~~~~~~~~~~
This module provides access to hydrologic and climate data in the Colorado
River Basin (Texas) provided by the `Lower Colorado River Authority`_
`Hydromet`_ web site and web service.
.. _Lower Colorado River Authority: http://www.lcra.org
.. _Hydromet: http://hydromet.lcra.org
"""
from bs4 import BeautifulSoup
import datetime
from dateutil.relativedelta import relativedelta
from geojson import Point, Feature, FeatureCollection
import logging
import requests
import pandas
from ulmo import util
# configure logging
LOG_FORMAT = '%(message)s'
logging.basicConfig(format=LOG_FORMAT)
log = logging.getLogger(__name__)
log.setLevel(logging.INFO)
historical_data_url = 'http://hydromet.lcra.org/chronhist.aspx'
current_data_url = 'http://hydrometdata.lcra.org'
PARAMETERS = {
'stage': 'the level of water above a benchmark in feet',
'flow': 'streamflow in cubic feet per second',
'pc': 'precipitation in inches',
'temp': 'air temperature in degrees fahrenheit',
'rhumid': 'air relative humidity as percentage',
'cndvty': 'water electrical conductivity in micromhos',
'tds': 'total suspended solids',
'windsp': 'wind speed, miles per hour',
'winddir': 'wind direction in degrees azimuth'
}
current_data_services = ['GetLowerBasin', 'GetUpperBasin']
# in the site list by parameter web page, in order to make distinction between
# stage measurements in lake and stream, the LCRA uses 'stage' for stream sites
# and 'lake' for lake sites
site_types = PARAMETERS.copy()
site_types.update({'lake': 'stage measurement in lakes'})
# for this dam sites, stage is named head or tail
dam_sites = ['1995', '1999', '2958', '2999', '3963', '3999']
def get_sites_by_type(site_type):
"""Gets list of the hydromet site codes and description for site.
Parameters:
-----------
site_type : str
In all but lake sites, this is the parameter code collected at the site.
For lake sites, it is 'lake'. See ``site_types`` and ``PARAMETERS``
Returns
-------
sites_dict: dict
A python dict with four char long site codes mapped to site information.
"""
sites_base_url = 'http://hydromet.lcra.org/navgagelist.asp?Stype=%s'
# the url doesn't provide list of sites for the following parameters but
# they are available with the paired parameter. e.g., flow is available
#at stage sites.
if site_type == 'winddir':
site_type = 'windsp'
if site_type == 'flow':
site_type = 'stage'
if site_type == 'tds':
site_type = 'cndvty'
if site_type not in site_types.keys():
return {}
res = requests.get(sites_base_url % site_type)
soup = BeautifulSoup(res.content, 'html')
sites_str = [
site.text.replace(' ', '').replace(u'\xa0', '') for site
in soup.findAll('a')]
sites_dict = dict([(s[:4], s[7:]) for s in sites_str])
return sites_dict
def get_all_sites():
"""Returns list of all LCRA hydromet sites as geojson featurecollection.
"""
sites_url = 'http://hydromet.lcra.org/data/datafull.xml'
res = requests.get(sites_url)
soup = BeautifulSoup(res.content, 'xml')
rows = soup.findAll('row')
features = [_create_feature(row) for row in rows]
sites = FeatureCollection(features)
return sites
def get_current_data(service, as_geojson=False):
"""fetches the current (near real-time) river stage and flow values from
LCRA web service.
Parameters
----------
service : str
The web service providing data. see `current_data_services`.
Currently we have GetUpperBasin and GetLowerBasin.
as_geojson : 'True' or 'False' (default)
If True the data is returned as geojson featurecollection and if False
data is returned as list of dicts.
Returns
-------
current_values_dicts : a list of dicts or
current_values_geojson : a geojson featurecollection.
"""
request_body_template = (
'<?xml version="1.0" encoding="utf-8"?>\n'
'<soap12:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" '
'xmlns:xsd="http://www.w3.org/2001/XMLSchema" '
'xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">\n '
' <soap12:Body>\n'
' <%s xmlns="http://hydrometdata.lcra.org" />\n'
' </soap12:Body> \n'
'</soap12:Envelope>'
)
if service.lower() == 'getupperbasin':
service = 'GetUpperBasin'
elif service.lower() == 'getlowerbasin':
service = 'GetLowerBasin'
else:
log.info('service %s not recognized' % service)
return {}
request_body = request_body_template % service
headers = {'Content-Type': 'text/xml; charset=utf-8'}
res = requests.post(current_data_url, data=request_body, headers=headers)
if res.status_code != 200:
log.info('http request failed with status code %s' % res.status_code)
return {}
soup = BeautifulSoup(res.content)
sites_els = soup.findAll('cls%s' % service.lower().replace('get', ''))
current_values_dicts = [_parse_current_values(site_el) for site_el in
sites_els]
if as_geojson:
features = []
for value_dict in current_values_dicts:
feature = _feature_for_values_dict(value_dict)
if len(feature):
features.append(feature[0])
if len(features) != len(current_values_dicts):
log.warn("some of the sites did not location information")
if len(features):
current_values_geojson = FeatureCollection(features)
return current_values_geojson
else:
return {}
else:
return current_values_dicts
def get_site_data(site_code, parameter_code, as_dataframe=True,
start_date=None, end_date=None, dam_site_location='head'):
"""Fetches site's parameter data
Parameters
----------
site_code : str
The LCRA site code (four chars long) of the site you want to query data
for.
parameter_code : str
LCRA parameter code. see ``PARAMETERS``
start_date : ``None`` or datetime
Start of a date range for a query.
end_date : ``None`` or datetime
End of a date range for a query.
as_dataframe : ``True`` (default) or ``False``
This determines what format values are returned as. If ``True`` (default)
then the values will be a pandas.DataFrame object with the values
timestamp as the index. If ``False``, the format will be Python
dictionary.
dam_site_location : 'head' (default) or 'tail'
The site location relative to the dam.
Returns
-------
df : pandas.DataFrame or
values_dict : dict
"""
parameter_code = parameter_code.upper()
if parameter_code.lower() not in PARAMETERS.keys():
log.info('%s is not an LCRA parameter' % parameter_code)
return None
initial_request = requests.get(historical_data_url)
if initial_request.status_code != 200:
return None
list_request_headers = {
'__EVENTTARGET': 'DropDownList1',
'DropDownList1': site_code,
}
list_request = _make_next_request(historical_data_url, initial_request, list_request_headers)
if list_request.status_code != 200:
return None
if parameter_code == 'STAGE':
if site_code in dam_sites:
parameter_code = dam_site_location.upper()
else:
parameter_code = 'STAGE'
elif parameter_code == 'RHUMID':
parameter_code = 'Rhumid'
#the parameter selection dropdown doesn't have flow. the data comes with stage.
elif parameter_code == 'FLOW':
parameter_code = 'STAGE'
else:
pass
if start_date is None:
start_date = datetime.date.today()
if end_date is None:
end_date = datetime.date.today() + relativedelta(days=1)
if (end_date - start_date).days < 180:
values_dict = _get_data(
site_code[:4], parameter_code, list_request, start_date, end_date)
if not values_dict:
return None
else:
values_dict = []
chunks = pandas.np.ceil((end_date - start_date).days / 180.)
for chunk in (pandas.np.arange(chunks) + 1):
request_start_date = start_date + relativedelta(
days=180 * (chunk - 1))
chunk_end_date = start_date + relativedelta(days=180 * chunk)
if chunk_end_date >= end_date:
request_end_date = end_date
else:
request_end_date = chunk_end_date
log.info("getting chunk: %i, start: %s, end: %s, parameter: %s" % (
chunk, request_start_date, request_end_date, parameter_code))
values_chunk = _get_data(
site_code[:4], parameter_code, list_request, request_start_date,
request_end_date)
values_dict += values_chunk
df = _values_dict_to_df(values_dict).astype(float)
if not as_dataframe:
return df.to_dict('records')
else:
return df
def _create_feature(row):
geometry = Point((float(row['e']), float(row['d'])))
site_props = dict(site_code=row['a'], site_description=row['c'])
site = Feature(geometry=geometry, properties=site_props)
return site
def _feature_for_values_dict(site_values_dict):
sites = get_all_sites()['features']
site = [_update_feature_props(site, site_values_dict) for site in sites if
site['properties']['site_description'].lower() ==
site_values_dict['location'].lower()]
return site
def _parse_current_values(site_el):
site_value_els = site_el.findChildren()
site_values = dict()
for value_el in site_value_els:
if value_el.name.lower() == 'datetime':
if value_el.get_text().strip() == '':
site_values[value_el.name.lower()] = None
else:
site_values[value_el.name.lower()] = util.convert_datetime(
value_el.get_text())
elif value_el.name.lower() == 'location':
site_values[value_el.name.lower()] = value_el.get_text().strip()
else:
if value_el.get_text().strip() == '':
site_values[value_el.name.lower()] = None
else:
site_values[value_el.name.lower()] = float(value_el.get_text())
return site_values
def _values_dict_to_df(values_dict):
if not len(values_dict):
return pandas.DataFrame({})
df = pandas.DataFrame(values_dict)
df.index = df['Date - Time'].apply(util.convert_datetime)
df.drop('Date - Time', axis=1, inplace=True)
df.sort_index(inplace=True)
df.dropna(axis=1, how='all', inplace=True)
df.dropna(axis=0, how='all', inplace=True)
return df
def _get_row_values(row, columns):
value_els = row.findAll('td')
values = [_parse_val(value_el.get_text()) for value_el in value_els]
return dict(zip(columns, values))
def _get_data(site_code, parameter_code, list_request, start, end):
data_request_headers = {
'Date1': start.strftime('%m/%d/%Y'),
'Date2': end.strftime('%m/%d/%Y'),
'DropDownList1': site_code
}
data_request_headers['DropDownList2'] = parameter_code
data_request = _make_next_request(
historical_data_url, list_request, data_request_headers)
if data_request.status_code != 200:
return None
soup = BeautifulSoup(data_request.content, 'html.parser')
columns = [col.get_text() for col in soup.findAll('th')]
values_dict = [_get_row_values(row, columns) for row in soup.findAll('tr')[1:]]
return values_dict
def _extract_headers_for_next_request(request):
payload = dict()
for tag in BeautifulSoup(request.content, 'html.parser').findAll('input'):
tag_dict = dict(tag.attrs)
if tag_dict.get('value', None) == 'tabular':
#
continue
#some tags don't have a value and are used w/ JS to toggle a set of checkboxes
payload[tag_dict['name']] = tag_dict.get('value')
return payload
def _make_next_request(url, previous_request, data):
data_headers = _extract_headers_for_next_request(previous_request)
data_headers.update(data)
return requests.post(url, cookies=previous_request.cookies, data=data_headers)
def _parse_val(val):
#the &nsbp translates to the following unicode
if val == u'\xa0':
return None
else:
return val
def _update_feature_props(feature, props):
if 'datetime' in props.keys():
props['datetime'] = props['datetime'].strftime('%Y-%m-%d %H:%M:%S')
feature_props = feature['properties']
feature_props.update(props)
feature['properties'] = feature_props
return feature
|