1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
"""
ulmo.cdec.historical.core
~~~~~~~~~~~~~~~~~~~~~~~~~~
This module provides access to data provided by the `California Department
of Water Resources`_ `California Data Exchange Center`_ web site.
.. _California Department of Water Resources: http://www.water.ca.gov/
.. _California Data Exchange Center: http://cdec.water.ca.gov
SELECTED CDEC SENSOR NUMBERS (these are not be available for all sites):
1 river stage [ft]
2 precipitation, accumulated [in]
3 SWE [in]
4 air temperature [F]
5 EC [ms/cm]
6 reservoir elevation [ft]
7 reservoir scheduled release [cfs]
8 full natural flow [cfs]
15 reservoir storage [af]
20 flow -- river discharge [cfs]
22 reservoir storage change [af]
23 reservoir outflow [cfs]
24 Evapotranspiration [in]
25 water temperature [F]
27 water turbidity [ntu]
28 chlorophyll [ug/l]
41 flow -- mean daily [cfs]
45 precipitation, incremental [in]
46 runoff volume [af]
61 water dissolved oxygen [mg/l]
62 water pH value [pH]
64 pan evaporation (incremental) [in]
65 full natural flow [af]
66 flow -- monthly volume [af]
67 accretions (estimated) [af]
71 spillway discharge [cfs]
74 lake evaporation (computed) [cfs]
76 reservoir inflow [cfs]
85 control regulating discharge [cfs]
94 top conservation storage (reservoir) [af]
100 water EC [us/cm]
CDEC DURATION CODES:
E event
H hourly
D daily
M monthly
"""
from builtins import str
from builtins import zip
import pandas as pd
import re
from ulmo import util
DEFAULT_START_DATE = '01/01/1901'
DEFAULT_END_DATE = 'Now'
def get_stations():
"""Fetches information on all CDEC sites.
Returns
-------
df : pandas DataFrame
a pandas DataFrame (indexed on site id) with station information.
"""
# I haven't found a better list of stations, seems pretty janky
# to just have them in a file, and not sure if/when it is updated.
url = 'http://cdec.water.ca.gov/misc/all_stations.csv'
# the csv is malformed, so some rows think there are 7 fields
col_names = ['id','meta_url','name','num','lat','lon','junk']
df = pd.read_csv(url, names=col_names, header=None, quotechar="'",index_col=0)
return df
def get_sensors(sensor_id=None):
"""
Gets a list of sensor ids as a DataFrame indexed on sensor
number. Can be limited by a list of numbers.
Usage example::
from ulmo import cdec
# to get all available sensor info
sensors = cdec.historical.get_sensors()
# or to get just one sensor
sensor = cdec.historical.get_sensors([1])
Parameters
----------
sites : iterable of integers or ``None``
Returns
-------
df : pandas DataFrame
a python dict with site codes mapped to site information
"""
url = 'http://cdec.water.ca.gov/misc/senslist.html'
df = pd.read_html(url, header=0)[0]
df.set_index('Sensor No')
if sensor_id is None:
return df
else:
return df.loc[sensor_id]
def get_station_sensors(station_ids=None, sensor_ids=None, resolutions=None):
"""
Gets available sensors for the given stations, sensor ids and time
resolutions. If no station ids are provided, all available stations will
be used (this is not recommended, and will probably take a really long
time).
The list can be limited by a list of sensor numbers, or time resolutions
if you already know what you want. If none of the provided sensors or
resolutions are available, an empty DataFrame will be returned for that
station.
Usage example::
from ulmo import cdec
# to get all available sensors
available_sensors = cdec.historical.get_station_sensors(['NEW'])
Parameters
----------
station_ids : iterable of strings or ``None``
sensor_ids : iterable of integers or ``None``
check out or use the ``get_sensors()`` function to see a list of
available sensor numbers
resolutions : iterable of strings or ``None``
Possible values are 'event', 'hourly', 'daily', and 'monthly' but not
all of these time resolutions are available at every station.
Returns
-------
dict : a python dict
a python dict with site codes as keys with values containing pandas
DataFrames of available sensor numbers and metadata.
"""
# PRA&SensorNums=76&dur_code=H&Start=2019-02-02&End=2019-02-04
station_sensors = {}
if station_ids is None:
station_ids = get_stations().index
for station_id in station_ids:
url = 'http://cdec.water.ca.gov/dynamicapp/staMeta?station_id=%s' % (station_id)
try:
sensor_list = pd.read_html(url, match='Sensor Description')[0]
except:
sensor_list = pd.read_html(url)[0]
try:
sensor_list.columns = ['sensor_id', 'variable', 'resolution','timerange']
except:
sensor_list.columns = ['variable', 'sensor_id', 'resolution', 'varcode', 'method', 'timerange']
sensor_list[['variable', 'units']] = sensor_list.variable.str.split(',', 1, expand=True)
sensor_list.resolution = sensor_list.resolution.str.strip('()')
station_sensors[station_id] = _limit_sensor_list(sensor_list, sensor_ids, resolutions)
return station_sensors
def get_data(station_ids=None, sensor_ids=None, resolutions=None, start=None, end=None):
"""
Downloads data for a set of CDEC station and sensor ids. If either is not
provided, all available data will be downloaded. Be really careful with
choosing hourly resolution as the data sets are big, and CDEC's servers
are slow as molasses in winter.
Usage example::
from ulmo import cdec
dat = cdec.historical.get_data(['PRA'],resolutions=['daily'])
Parameters
----------
station_ids : iterable of strings or ``None``
sensor_ids : iterable of integers or ``None``
check out or use the ``get_sensors()`` function to see a list of
available sensor numbers
resolutions : iterable of strings or ``None``
Possible values are 'event', 'hourly', 'daily', and 'monthly' but not
all of these time resolutions are available at every station.
Returns
-------
dict : a python dict
a python dict with site codes as keys. Values will be nested dicts
containing all of the sensor/resolution combinations.
"""
if start is None:
start_date = util.convert_date(DEFAULT_START_DATE)
else:
start_date = util.convert_date(start)
if end is None:
end_date = util.convert_date(DEFAULT_END_DATE)
else:
end_date = util.convert_date(end)
start_date_str = _format_date(start_date)
end_date_str = _format_date(end_date)
if station_ids is None:
station_ids = get_stations().index
sensors = get_station_sensors(station_ids, sensor_ids, resolutions)
d = {}
for station_id, sensor_list in list(sensors.items()):
station_data = {}
for index, row in sensor_list.iterrows():
res = row.loc['resolution']
var = row.loc['variable']
sensor_id = row.loc['sensor_id']
station_data[var] = _download_raw(station_id, sensor_id, _res_to_dur_code(res), start_date_str, end_date_str)
d[station_id] = station_data
return d
def _limit_sensor_list(sensor_list, sensor_ids, resolution):
if sensor_ids is not None:
sensor_list = sensor_list[[x in sensor_ids for x in sensor_list.sensor_id]]
if resolution is not None:
sensor_list = sensor_list[[x in resolution for x in sensor_list.resolution]]
return sensor_list
def _download_raw(station_id, sensor_num, dur_code, start_date, end_date):
url = 'http://cdec.water.ca.gov/dynamicapp/req/CSVDataServlet' + \
'?Stations=' + station_id + \
'&dur_code=' + dur_code + \
'&SensorNums=' + str(sensor_num) + \
'&Start=' + start_date + \
'&End=' + end_date
df = pd.read_csv(url, parse_dates=[4,5], index_col='DATE TIME', na_values='---')
df.columns = ['station_id', 'duration', 'sensor_number', 'sensor_type', 'obs_date', 'value', 'data_flag', 'units']
return df
def _res_to_dur_code(res):
map = {
'hourly':'H',
'daily':'D',
'monthly':'M',
'event':'E'}
return map[res]
def _format_date(date):
return '%s/%s/%s' % (date.month, date.day, date.year)
|