File: README.rst

package info (click to toggle)
python-ulmo 0.8.8%2Bdfsg1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,064 kB
  • sloc: python: 6,135; makefile: 144; sh: 5
file content (105 lines) | stat: -rw-r--r-- 3,595 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
ulmo
====

**Clean, simple and fast access to public hydrology and climatology data**


Project Status
--------------

.. image:: https://github.com/ulmo-dev/ulmo/actions/workflows/default-tests.yml/badge.svg
        :target: https://github.com/ulmo-dev/ulmo/actions/workflows/default-tests.yml
        :alt: GitHub Action CI tests

.. image:: https://img.shields.io/conda/vn/conda-forge/ulmo.svg
        :target: https://anaconda.org/conda-forge/ulmo
        :alt: Latest conda package

.. image:: https://coveralls.io/repos/ulmo-dev/ulmo/badge.svg?branch=master&service=github
        :target: https://coveralls.io/github/ulmo-dev/ulmo?branch=master

.. image:: https://readthedocs.org/projects/ulmo/badge/?version=latest
        :target: https://ulmo.readthedocs.io/en/latest/?badge=latest
        :alt: Documentation Status


Features
--------

- retrieves and parses datasets from the web
- returns simple python data structures that can be easily pulled into more
  sophisticated tools such as Pandas for analysis
- caches datasets locally and harvests updates as needed


Datasets
--------

Currently, ulmo supports the following datasets / services:

- California Department of Water Resources Historical Data
- Climate Prediction Center Weekly Drought
- CUAHSI WaterOneFlow
- Lower Colorado River Authority Hydromet and Water Quality Data
- NASA Daymet weather data
- National Climatic Data Center Climate Index Reference Sequential (CIRS)
- National Climatic Data Center Global Historical Climate Network Daily
- National Climatic Data Center Global Summary of the Day
- Texas Weather Connection Daily Keetch-Byram Drought Index (KBDI)
- US Army Corps of Engineers - Tulsa District Water Control
- USGS National Water Information System
- USGS Emergency Data Distribution Network services
- USGS Earth Resources Observation Systems (EROS) services
- USGS National Elevation Dataset (NED) services


Installation
------------

Ulmo depends on a lot of libraries from the scientific python stack (namely:
numpy, pytables and pandas) and lxml. There are a couple of ways to get these
dependencies installed but it can be tricky if doing it by hand. The simplest
way to get things up and running is to use a scientific python distribution that
will install everything together. A full list is available on the `scipy`_
website but `Anaconda`_ / `Miniconda`_ is recommended as it is the easiest to set up.

If you are using Anaconda/Miniconda then you can install ulmo from the `conda-forge`_
channel with the following command:

    conda install -c conda-forge ulmo

Otherwise, follow the instructions below:

Once the requisite scientific python libraries are installed, the
most recent release of ulmo can be installed from PyPI using ``pip``:

    pip install ulmo

To install the bleeding edge development version, grab a copy of the `source
code`_ and run setup.py from the root directory:

To setup a development environment using conda:

    conda env create -n myenv --file conda_environment.yml

    # use 'activate myenv' on windows

    source activate myenv

    pip install -e .


Links
-----

* Documentation: http://ulmo.readthedocs.org
* Repository: https://github.com/ulmo-dev/ulmo


.. _source code: https://github.com/ulmo-dev/ulmo
.. _issue tracker: https://github.com/ulmo-dev/ulmo/issues?labels=new+dataset&state=open
.. _more sophisticated tools: http://pandas.pydata.org
.. _scipy: http://scipy.org/install.html
.. _Anaconda: http://continuum.io/downloads.html
.. _Miniconda: https://docs.conda.io/en/latest/miniconda.html
.. _conda-forge: https://conda-forge.org