1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
"""
ulmo.cpc.drought.core
~~~~~~~~~~~~~~~~~~~~~
This module provides direct access to `Climate Predicition Center`_ `Weekly
Drought Index`_ dataset.
.. _Climate Prediction Center: http://www.cpc.ncep.noaa.gov/
.. _Weekly Drought Index: http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/palmer_drought/
"""
from __future__ import division
from builtins import str
from builtins import range
from past.utils import old_div
import datetime
import os
import requests
import numpy as np
import pandas
from ulmo import util
# directory where drought data will be stashed
CPC_DROUGHT_DIR = os.path.join(util.get_ulmo_dir(), 'cpc/drought')
# state codes (note: these are not FIPS codes)
STATE_CODES = {
'AL': 1,
'AZ': 2,
'AR': 3,
'CA': 4,
'CO': 5,
'CT': 6,
'DE': 7,
'FL': 8,
'GA': 9,
'IA': 13,
'ID': 10,
'IL': 11,
'IN': 12,
'KS': 14,
'KY': 15,
'LA': 16,
'MA': 19,
'MD': 18,
'ME': 17,
'MI': 20,
'MN': 21,
'MO': 23,
'MS': 22,
'MT': 24,
'NC': 31,
'ND': 32,
'NE': 25,
'NH': 27,
'NJ': 28,
'NM': 29,
'NV': 26,
'NY': 30,
'OH': 33,
'OK': 34,
'OR': 35,
'PA': 36,
'PR': 66,
'RI': 37,
'SC': 38,
'SD': 39,
'TN': 40,
'TX': 41,
'UT': 42,
'VA': 44,
'VT': 43,
'WA': 45,
'WI': 47,
'WV': 46,
'WY': 48,
}
def get_data(state=None, climate_division=None, start=None, end=None,
as_dataframe=False):
"""Retreives data.
Parameters
----------
state : ``None`` or str
If specified, results will be limited to the state corresponding to the
given 2-character state code.
climate_division : ``None`` or int
If specified, results will be limited to the climate division.
start : ``None`` or date (see :ref:`dates-and-times`)
Results will be limited to those after the given date. Default is the
start of the current calendar year.
end : ``None`` or date (see :ref:`dates-and-times`)
If specified, results will be limited to data before this date.
as_dataframe: bool
If ``False`` (default), a dict with a nested set of dicts will be
returned with data indexed by state, then climate division. If ``True``
then a pandas.DataFrame object will be returned. The pandas dataframe
is used internally, so setting this to ``True`` is a little bit faster
as it skips a serialization step.
Returns
-------
data : dict or pandas.Dataframe
A dict or pandas.DataFrame representing the data. See the
``as_dataframe`` parameter for more.
"""
if not start is None:
start_date = util.convert_date(start)
else:
start_date = None
if not end is None:
end_date = util.convert_date(end)
else:
end_date = None
if not end_date:
end_date = datetime.date.today()
if not start_date:
start_date = datetime.date(end_date.year, 1, 1)
start_year, start_week = _week_number(start_date)
end_year, end_week = _week_number(end_date)
if state:
state_code = STATE_CODES.get(state.upper())
else:
state_code = None
data = None
for year in range(start_year, end_year + 1):
url, current_year_flag = _get_data_url(year)
format_type = _get_data_format(year)
with _open_data_file(url) as data_file:
year_data = _parse_data_file(data_file, format_type, year, current_year_flag)
if state_code:
year_data = year_data[year_data['state_code'] == state_code]
if climate_division:
year_data = year_data[year_data['climate_division'] == climate_division]
year_data = _reindex_data(year_data)
if data is None:
data = year_data
else:
# some data are duplicated (e.g. final data from 2011 stretches into
# prelim data of 2012), so just take those that are new
append_index = year_data.index.difference(data.index)
if len(append_index):
data = data.append(year_data.loc[append_index])
# restrict results to date range
period_index = pandas.PeriodIndex(data['period'])
periods_in_range = (period_index >= start_date) & (period_index <= end_date)
data = data[periods_in_range]
# this does what data.reset_index() should do, but at least as of 0.10.1, that sets
# will cast period objects to ints
data.index = np.arange(len(data))
if as_dataframe:
return data
else:
return _as_data_dict(data)
def _as_data_dict(dataframe):
data_dict = {}
for state in dataframe['state'].unique():
state_dict = {}
state_dataframe = dataframe[dataframe['state'] == state]
for name, group in state_dataframe.groupby(['state', 'climate_division']):
s, climate_division = name
climate_division_data = group.T.drop(['state', 'climate_division'])
values = [
_value_dict(value)
for k, value in climate_division_data.iteritems()
]
state_dict[climate_division] = values
data_dict[state] = state_dict
return data_dict
def _convert_state_codes(dataframe):
"""adds state abbreviations to a dataframe, based on state codes"""
state_codes = pandas.DataFrame(
np.array([i for i in STATE_CODES.items()],
dtype=np.dtype([('state', '|U2'), ('code', int)])))
merged = pandas.merge(dataframe, state_codes,
left_on='state_code', right_on='code', how='left')
column_names = dataframe.columns.tolist()
column_names.remove('state_code')
column_names.insert(0, 'state')
return merged[column_names]
def _convert_week_numbers(dataframe):
"""convert a dataframe's week numbers to period objects"""
weeks = [key for key, group in dataframe.groupby(['year', 'week'])]
periods = [(week[0], week[1], _period_for_week(*week)) for week in weeks]
period_dataframe = pandas.DataFrame(periods, columns=['year', 'week', 'period'])
merged = pandas.merge(dataframe, period_dataframe,
left_on=['year', 'week'], right_on=['year', 'week'])
column_names = dataframe.columns.tolist()
column_names.remove('week')
column_names.remove('year')
column_names.insert(2, 'period')
return merged[column_names]
def _first_sunday(year):
"""returns the first Sunday of a growing season, which is the first Sunday
after the first Wednesday in March
"""
first_day = datetime.date(year, 3, 1)
if first_day.weekday() == 6:
return first_day
elif first_day.weekday() <= 2:
return first_day - pandas.tseries.offsets.Week(weekday=6)
else:
return first_day + pandas.tseries.offsets.Week(weekday=6)
def _get_data_format(year):
if year >= 2001:
return 'format5'
elif 1997 <= year <= 2000:
return 'format4'
else:
return 'format2'
def _get_data_url(year):
current_year, current_week = _week_number(datetime.date.today())
if year == current_year:
return ('https://ftp.cpc.ncep.noaa.gov/htdocs/temp4/current.data', True)
elif year == current_year - 1:
url = ('https://ftp.cpc.ncep.noaa.gov/htdocs/temp2/palmer%s-PRELIM' % str(year)[-2:],
False)
if not _url_exists(url[0]):
url = ('https://ftp.cpc.ncep.noaa.gov/htdocs/temp4/current.data', True)
return url
elif year <= 1985:
return ('https://ftp.cpc.ncep.noaa.gov/htdocs/temp2/palmer73-85', False)
else:
url = ('https://ftp.cpc.ncep.noaa.gov/htdocs/temp2/palmer%s' % str(year)[-2:], False)
if not _url_exists(url[0]):
url = ('https://ftp.cpc.ncep.noaa.gov/htdocs/temp2/palmer%s-PRELIM' % str(year)[-2:],
False)
return url
def _open_data_file(url):
"""returns an open file handle for a data file; downloading if necessary or otherwise using a previously downloaded file"""
file_name = url.rsplit('/', 1)[-1]
file_path = os.path.join(CPC_DROUGHT_DIR, file_name)
return util.open_file_for_url(url, file_path, check_modified=True, use_bytes=True)
def _parse_data_file(data_file, palmer_format, year, current_year_flag):
"""
based on the fortran format strings:
format2: FORMAT(I4,3I2,F4.1,F4.0,10F6.2,4F6.4,F6.3,10F6.2,F4.0,12F6.2)
format4: FORMAT(2I4,I2,F4.1,F4.0,10F6.2,4F6.4,F6.3,10F6.2,F4.0,12F6.2)
format5: FORMAT(2I4,I2,F5.2,F5.1,10F6.2,4F6.4,F6.3,10F6.2,F4.0,12F6.2)
"""
if palmer_format == 'format5':
delim_sequence = (2, 2, 4, 2, 5, 5) + 10*(6,) + 4*(6,) + (6,) + 10*(6,) + (4,) + 12*(6,)
use_columns = (0, 1, 2, 3, 4, 5, 9, 15, 28, 29, 37, 40, 41)
elif palmer_format == 'format4':
delim_sequence = (2, 2, 4, 2, 4, 4) + 10*(6,) + 4*(6,) + (6,) + 10*(6,) + (4,) + 12*(6,)
use_columns = (0, 1, 2, 3, 4, 5, 9, 15, 28, 29, 37, 40, 41)
elif palmer_format == 'format2':
delim_sequence = (2, 2, 2, 2, 2, 4, 4) + 10*(6,) + 4*(6,) + (6,) + 10*(6,) + (4,) + 12*(6,)
use_columns = (0, 1, 2, 3, 5, 6, 10, 16, 29, 30, 38, 41, 42)
else:
raise NotImplementedError("we have not implemented the format for given date range")
dtype = [
('state_code', 'i1'),
('climate_division', 'i1'),
('year', 'i4'),
('week', 'i4'),
('precipitation', 'f8'),
('temperature', 'f8'),
('potential_evap', 'f8'),
('runoff', 'f8'),
('soil_moisture_upper', 'f8'),
('soil_moisture_lower', 'f8'),
('pdsi', 'f8'),
('cmi', 'f8')
]
decodef = lambda x: x.decode("utf-8")
data_array = np.genfromtxt(data_file, dtype=dtype, delimiter=delim_sequence, usecols=use_columns)
if not current_year_flag:
data_array['year'] = year
dataframe = pandas.DataFrame(data_array)
return dataframe
def _periods_for_range(start_date, end_date):
return pandas.period_range(start_date, end_date, freq='W-SAT')
def _period_for_week(year, week_number):
"""returns a pandas.Period for a given growing season year and week number"""
first_sunday = _first_sunday(year)
return pandas.Period(first_sunday, freq='W-SAT') + week_number - 1
def _reindex_data(dataframe):
dataframe = _convert_week_numbers(dataframe)
dataframe = _convert_state_codes(dataframe)
return dataframe.set_index(
['state', 'climate_division', 'period'], drop=False)
def _url_exists(url):
return requests.head(url).status_code == 200
def _value_dict(value):
value_dict = value.to_dict()
value_dict['period'] = str(value_dict['period'])
return value_dict
def _week_number(date):
"""returns the growing season week number for a given datetime.date"""
first_sunday = _first_sunday(date.year)
date_ts = pandas.Timestamp(date)
first_sunday_ts = pandas.Timestamp(first_sunday)
if date_ts < first_sunday_ts:
first_sunday_ts = pandas.Timestamp(_first_sunday(date.year - 1))
days_since_first_sunday = (date_ts - first_sunday_ts).days
return (first_sunday_ts.year, (old_div(days_since_first_sunday, 7)) + 1)
|