1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
"""
ulmo.lcra.waterquality.core
~~~~~~~~~~~~~~~~~~~~~~~~~~~
This module provides access to data provided by the `Lower Colorado
River Authority`_ `Water Quality`_ web site.
.. _Lower Colorado River Authority: http://www.lcra.org
.. _Water Quality: http://waterquality.lcra.org/
"""
from bs4 import BeautifulSoup
import logging
from geojson import Point, Feature, FeatureCollection
# import unicode
from ulmo import util
import dateutil
# import datetime
import os.path as op
LCRA_WATERQUALITY_DIR = op.join(util.get_ulmo_dir(), 'lcra/waterquality')
log = logging.getLogger(__name__)
import requests
import pandas as pd
source_map = {
'LCRA': 'Lower Colorado River Authority',
'UCRA': 'Upper Colorado River Authority',
'CRMWD': 'Colorado River Municipal Water District',
'COA': 'City of Austin',
'TCEQ': 'Texas Commission on Environmental Quality',
}
real_time_sites = {
'6977': 'Matagorda 4SSW',
'6985': 'Matagorda 7 SW',
'6990': 'Matagorda 8 SSW',
'6996': 'Matagorda 9 SW'
}
# try:
# import cStringIO as StringIO
# except ImportError:
# import StringIO
def get_sites(source_agency=None):
"""Fetches a list of sites with location and available metadata.
Parameters
----------
source_agency : str
LCRA used code of the that collects the data. There are sites whose
sources are not listed so this filter may not return all sites of a certain source.
See ``source_map``.
Returns
-------
sites_geojson : geojson FeatureCollection
"""
sites_url = 'http://waterquality.lcra.org/'
response = requests.get(sites_url)
lines = response.content.decode('utf-8').split('\n')
sites_unprocessed = [
line.strip().strip('createMarker').strip("(").strip(")").split(',')
for line in lines if 'createMarker' in line]
sites = [_create_feature(site_info) for site_info in sites_unprocessed]
if source_agency:
if not source_agency.upper() in source_map.keys():
log.info('the source %s is not recognized' % source_agency)
return {}
else:
sites = [site for site in sites if site['properties']['source'] ==
source_map[source_agency.upper()]]
sites_geojson = FeatureCollection(sites)
return sites_geojson
def get_historical_data(site_code, start=None, end=None, as_dataframe=False):
"""Fetches data for a site at a given date.
Parameters
----------
site_code : str
The site code to fetch data for. A list of sites can be retrieved with
``get_sites()``
date : ``None`` or date (see :ref:`dates-and-times`)
The date of the data to be queried. If date is ``None`` (default), then
all data will be returned.
as_dataframe : bool
This determines what format values are returned as. If ``False``
(default), the values dict will be a dict with timestamps as keys mapped
to a dict of gauge variables and values. If ``True`` then the values
dict will be a pandas.DataFrame object containing the equivalent
information.
Returns
-------
data_dict : dict
A dict containing site information and values.
"""
if isinstance(site_code, (str)):
pass
elif isinstance(site_code, (int)):
site_code = str(site_code)
else:
log.error("Unsure of the site_code parameter type. \
Try string or int")
raise
waterquality_url = "http://waterquality.lcra.org/parameter.aspx?qrySite=%s" % site_code
waterquality_url2 = 'http://waterquality.lcra.org/events.aspx'
initial_request = requests.get(waterquality_url)
initialsoup = BeautifulSoup(initial_request.content, 'html.parser')
sitevals = [statag.get('value', None)
for statag in initialsoup.findAll(id="multiple")
if statag.get('value', None)]
result = _make_next_request(waterquality_url2,
initial_request,
{'multiple': sitevals,
'site': site_code})
soup = BeautifulSoup(result.content, 'html.parser')
gridview = soup.find(id="GridView1")
results = []
headers = [head.text for head in gridview.findAll('th')]
# uses \xa0 for blank
for row in gridview.findAll('tr'):
vals = [_parse_val(aux.text) for aux in row.findAll('td')]
if len(vals) == 0:
continue
results.append(dict(zip(headers, vals)))
data = _create_dataframe(results)
if start and not data.empty:
data = data.ix[util.convert_date(start):]
if end and not data.empty:
data = data.ix[:util.convert_date(end)]
if as_dataframe:
return data
else:
return data.to_dict(orient='records')
def get_recent_data(site_code, as_dataframe=False):
"""fetches near real-time instantaneous water quality data for the LCRA
bay sites.
Parameters
----------
site_code : str
The bay site to fetch data for. see `real_time_sites`
as_dataframe : bool
This determines what format values are returned as. If ``False``
(default), the values will be list of value dicts. If ``True`` then
values are returned as pandas.DataFrame.
Returns
-------
list
list of values or dataframe.
"""
if site_code not in real_time_sites.keys():
log.info('%s is not in the list of LCRA real time salinity sites' %
site_code)
return {}
data_url = 'http://waterquality.lcra.org/salinity.aspx?sNum=%s&name=%s' % (
site_code, real_time_sites[site_code])
data = pd.read_html(data_url, header=0)[1]
data.index = data['Date - Time'].apply(lambda x: util.convert_datetime(
x))
data.drop('Date - Time', axis=1, inplace=True)
data = data.applymap(_nan_values)
data.dropna(how='all', axis=0, inplace=True)
data.dropna(how='all', axis=1, inplace=True)
columns = dict([(column, _beautify_header(column)) for column in
data.columns])
data.rename(columns=columns, inplace=True)
data = data.astype(float)
if as_dataframe:
return data
else:
return util.dict_from_dataframe(data)
def _nan_values(value):
if value == -998. or value == '--':
return pd.np.nan
else:
return value
def _beautify_header(str):
return str.replace(u'\xb0', 'deg').lower().replace(
'(', '').replace(')', '').replace(
u'%', u'percent').replace(' ', '_').replace(u'/', 'per')
def get_site_info(site_code):
sites = get_sites()
site = [site for site in sites['features']
if site_code == site['properties']['site_code']]
return site
def _create_dataframe(results):
df = pd.DataFrame.from_records(results)
df['Date'] = df['Date'].apply(util.convert_date)
df.set_index(['Date'], inplace=True)
df.dropna(how='all', axis=0, inplace=True)
df.dropna(how='all', axis=1, inplace=True)
return df
def _create_feature(site_info_list):
geometry = Point((float(site_info_list[0].strip()), float(site_info_list[1].strip())))
site_type_code = site_info_list[3].replace('"', '').strip()
site_props = _parse_site_str(site_info_list[2])
site_props['parameter'] = _get_parameter(site_type_code)
site_props['source'] = _get_source(site_type_code)
site_props['water_body'] = _get_water_body(site_type_code)
site_props['real_time'] = _real_time(site_type_code)
return Feature(geometry=geometry, properties=site_props)
def _extract_headers_for_next_request(request):
payload = dict()
for tag in BeautifulSoup(request.content, 'html.parser').findAll('input'):
tag_dict = dict(tag.attrs)
if tag_dict.get('value', None) == 'tabular':
#
continue
# some tags don't have a value and are used w/ JS to toggle a set of checkboxes
payload[tag_dict['name']] = tag_dict.get('value')
return payload
def _get_source(site_type_code):
internal_source_abbr = {
'LCLC': 'LCRA',
'LCUC': 'UCRA',
'LCCW': 'CRMWD',
'LCAU': 'COA',
'WCFO': 'TCEQ'
}
if site_type_code not in internal_source_abbr.keys():
return None
return source_map.get(internal_source_abbr[site_type_code])
def _get_parameter(site_type_code):
if site_type_code == 'Salinity' or site_type_code == 'Conductivity':
return site_type_code
else:
return None
def _get_water_body(site_type_code):
if site_type_code == 'Bay':
return 'Bay'
else:
return None
def _make_next_request(url, previous_request, data):
data_headers = _extract_headers_for_next_request(previous_request)
data_headers.update(data)
return requests.post(url, cookies=previous_request.cookies, data=data_headers)
def _parse_val(val):
# the &nsbp translates to the following unicode
if val == u'\xa0':
return None
else:
return val
def _parse_site_str(site_str):
site_code = site_str.split('<br />')[0].replace('"', '')\
.replace('Site', '').replace('Number', '').replace(':', '').strip()
site_description = site_str.split('<br />')[1].strip('"')
return dict(site_code=site_code, site_description=site_description)
def _real_time(site_type_code):
if site_type_code == 'Salinity' or site_type_code == 'Conductivity':
return True
else:
return False
|