File: core.py

package info (click to toggle)
python-ulmo 0.8.8%2Bdfsg1-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,064 kB
  • sloc: python: 6,135; makefile: 144; sh: 5
file content (437 lines) | stat: -rw-r--r-- 12,883 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
"""
    ulmo.twc.kbdi.core
    ~~~~~~~~~~~~~~~~~~~~~

    This module provides direct access to `Texas Weather Connection`_ `Daily
    Keetch-Byram Drought Index (KBDI)`_ dataset.

    .. _Texas Weather Connection: http://twc.tamu.edu/
    .. _Daily Keetch-Byram Drought Index (KBDI): http://twc.tamu.edu/drought/kbdi
"""

import datetime
import os

import numpy as np
import pandas

from ulmo import util

CSV_SWITCHOVER = pandas.Timestamp('2016-10-01')

def get_data(county=None, start=None, end=None, as_dataframe=False, data_dir=None):
    """Retreives data.

    Parameters
    ----------
    county : ``None`` or str
        If specified, results will be limited to the county corresponding to the
        given 5-character Texas county fips code i.e. 48???.
    end : ``None`` or date (see :ref:`dates-and-times`)
        Results will be limited to data on or before this date. Default is the
        current date.
    start : ``None`` or date (see :ref:`dates-and-times`)
        Results will be limited to data on or after this date. Default is the
        start of the calendar year for the end date.
    as_dataframe: bool
        If ``False`` (default), a dict with a nested set of dicts will be
        returned with data indexed by 5-character Texas county FIPS code. If ``True``
        then a pandas.DataFrame object will be returned.  The pandas dataframe
        is used internally, so setting this to ``True`` is a little bit faster
        as it skips a serialization step.
    data_dir : ``None`` or directory path
        Directory for holding downloaded data files. If no path is provided
        (default), then a user-specific directory for holding application data
        will be used (the directory will depend on the platform/operating
        system).


    Returns
    -------
    data : dict or pandas.Dataframe
        A dict or pandas.DataFrame representing the data. See the
        ``as_dataframe`` parameter for more.
    """
    if end is None:
        end_date = datetime.date.today()
    else:
        end_date = util.convert_date(end)
    if start is None:
        start_date = datetime.date(end_date.year, 1, 1)
    else:
        start_date = util.convert_date(start)
    if data_dir is None:
        data_dir = os.path.join(util.get_ulmo_dir(), 'twc/kbdi')

    df = pandas.concat([
        _date_dataframe(date, data_dir)
        for date in pandas.period_range(start_date, end_date, freq='D')
    ], ignore_index=True)
    fips_df = _fips_dataframe()
    df = pandas.merge(df, fips_df, left_on='county', right_on='name')
    del df['name']

    if county:
        df = df[df['fips'] == county]

    if as_dataframe:
        return df
    else:
        return _as_data_dict(df)


def _as_data_dict(df):
    df['date'] = df['date'].map(str)
    county_dict = {}
    for county in df['fips'].unique():
        county_df = df[df['fips'] == county]
        county_data = county_df.T.drop(['fips'])
        values = [v.to_dict() for k, v in county_data.iteritems()]
        county_dict[county] = values

    return county_dict


def _date_dataframe(date, data_dir):

    if date.to_timestamp() < CSV_SWITCHOVER:
        url = _get_text_url(date)
        with _open_data_file(url, data_dir) as data_file:
            date_df = _parse_text_file(data_file)
    else:
        url = _get_csv_url(date)
        with _open_data_file(url, data_dir) as data_file:
            date_df = _parse_csv_file(data_file)

    date_df['date'] = pandas.Period(date, freq='D')

    return date_df


def _fips_dataframe():
    # fips codes from http://www.census.gov/geo/www/ansi/national.txt
    # with names adjusted to match twc kbdi: DEWITT --> DE WITT
    codes = (
        ('ANDERSON', 48001),
        ('ANDREWS', 48003),
        ('ANGELINA', 48005),
        ('ARANSAS', 48007),
        ('ARCHER', 48009),
        ('ARMSTRONG', 48011),
        ('ATASCOSA', 48013),
        ('AUSTIN', 48015),
        ('BAILEY', 48017),
        ('BANDERA', 48019),
        ('BASTROP', 48021),
        ('BAYLOR', 48023),
        ('BEE', 48025),
        ('BELL', 48027),
        ('BEXAR', 48029),
        ('BLANCO', 48031),
        ('BORDEN', 48033),
        ('BOSQUE', 48035),
        ('BOWIE', 48037),
        ('BRAZORIA', 48039),
        ('BRAZOS', 48041),
        ('BREWSTER', 48043),
        ('BRISCOE', 48045),
        ('BROOKS', 48047),
        ('BROWN', 48049),
        ('BURLESON', 48051),
        ('BURNET', 48053),
        ('CALDWELL', 48055),
        ('CALHOUN', 48057),
        ('CALLAHAN', 48059),
        ('CAMERON', 48061),
        ('CAMP', 48063),
        ('CARSON', 48065),
        ('CASS', 48067),
        ('CASTRO', 48069),
        ('CHAMBERS', 48071),
        ('CHEROKEE', 48073),
        ('CHILDRESS', 48075),
        ('CLAY', 48077),
        ('COCHRAN', 48079),
        ('COKE', 48081),
        ('COLEMAN', 48083),
        ('COLLIN', 48085),
        ('COLLINGSWORTH', 48087),
        ('COLORADO', 48089),
        ('COMAL', 48091),
        ('COMANCHE', 48093),
        ('CONCHO', 48095),
        ('COOKE', 48097),
        ('CORYELL', 48099),
        ('COTTLE', 48101),
        ('CRANE', 48103),
        ('CROCKETT', 48105),
        ('CROSBY', 48107),
        ('CULBERSON', 48109),
        ('DALLAM', 48111),
        ('DALLAS', 48113),
        ('DAWSON', 48115),
        ('DE WITT', 48123),
        ('DEAF SMITH', 48117),
        ('DELTA', 48119),
        ('DENTON', 48121),
        ('DEWITT', 48123),
        ('DICKENS', 48125),
        ('DIMMIT', 48127),
        ('DONLEY', 48129),
        ('DUVAL', 48131),
        ('EASTLAND', 48133),
        ('ECTOR', 48135),
        ('EDWARDS', 48137),
        ('EL PASO', 48141),
        ('ELLIS', 48139),
        ('ERATH', 48143),
        ('FALLS', 48145),
        ('FANNIN', 48147),
        ('FAYETTE', 48149),
        ('FISHER', 48151),
        ('FLOYD', 48153),
        ('FOARD', 48155),
        ('FORT BEND', 48157),
        ('FRANKLIN', 48159),
        ('FREESTONE', 48161),
        ('FRIO', 48163),
        ('GAINES', 48165),
        ('GALVESTON', 48167),
        ('GARZA', 48169),
        ('GILLESPIE', 48171),
        ('GLASSCOCK', 48173),
        ('GOLIAD', 48175),
        ('GONZALES', 48177),
        ('GRAY', 48179),
        ('GRAYSON', 48181),
        ('GREGG', 48183),
        ('GRIMES', 48185),
        ('GUADALUPE', 48187),
        ('HALE', 48189),
        ('HALL', 48191),
        ('HAMILTON', 48193),
        ('HANSFORD', 48195),
        ('HARDEMAN', 48197),
        ('HARDIN', 48199),
        ('HARRIS', 48201),
        ('HARRISON', 48203),
        ('HARTLEY', 48205),
        ('HASKELL', 48207),
        ('HAYS', 48209),
        ('HEMPHILL', 48211),
        ('HENDERSON', 48213),
        ('HIDALGO', 48215),
        ('HILL', 48217),
        ('HOCKLEY', 48219),
        ('HOOD', 48221),
        ('HOPKINS', 48223),
        ('HOUSTON', 48225),
        ('HOWARD', 48227),
        ('HUDSPETH', 48229),
        ('HUNT', 48231),
        ('HUTCHINSON', 48233),
        ('IRION', 48235),
        ('JACK', 48237),
        ('JACKSON', 48239),
        ('JASPER', 48241),
        ('JEFF DAVIS', 48243),
        ('JEFFERSON', 48245),
        ('JIM HOGG', 48247),
        ('JIM WELLS', 48249),
        ('JOHNSON', 48251),
        ('JONES', 48253),
        ('KARNES', 48255),
        ('KAUFMAN', 48257),
        ('KENDALL', 48259),
        ('KENEDY', 48261),
        ('KENT', 48263),
        ('KERR', 48265),
        ('KIMBLE', 48267),
        ('KING', 48269),
        ('KINNEY', 48271),
        ('KLEBERG', 48273),
        ('KNOX', 48275),
        ('LA SALLE', 48283),
        ('LAMAR', 48277),
        ('LAMB', 48279),
        ('LAMPASAS', 48281),
        ('LAVACA', 48285),
        ('LEE', 48287),
        ('LEON', 48289),
        ('LIBERTY', 48291),
        ('LIMESTONE', 48293),
        ('LIPSCOMB', 48295),
        ('LIVE OAK', 48297),
        ('LLANO', 48299),
        ('LOVING', 48301),
        ('LUBBOCK', 48303),
        ('LYNN', 48305),
        ('MADISON', 48313),
        ('MARION', 48315),
        ('MARTIN', 48317),
        ('MASON', 48319),
        ('MATAGORDA', 48321),
        ('MAVERICK', 48323),
        ('MCCULLOCH', 48307),
        ('MCLENNAN', 48309),
        ('MCMULLEN', 48311),
        ('MEDINA', 48325),
        ('MENARD', 48327),
        ('MIDLAND', 48329),
        ('MILAM', 48331),
        ('MILLS', 48333),
        ('MITCHELL', 48335),
        ('MONTAGUE', 48337),
        ('MONTGOMERY', 48339),
        ('MOORE', 48341),
        ('MORRIS', 48343),
        ('MOTLEY', 48345),
        ('NACOGDOCHES', 48347),
        ('NAVARRO', 48349),
        ('NEWTON', 48351),
        ('NOLAN', 48353),
        ('NUECES', 48355),
        ('OCHILTREE', 48357),
        ('OLDHAM', 48359),
        ('ORANGE', 48361),
        ('PALO PINTO', 48363),
        ('PANOLA', 48365),
        ('PARKER', 48367),
        ('PARMER', 48369),
        ('PECOS', 48371),
        ('POLK', 48373),
        ('POTTER', 48375),
        ('PRESIDIO', 48377),
        ('RAINS', 48379),
        ('RANDALL', 48381),
        ('REAGAN', 48383),
        ('REAL', 48385),
        ('RED RIVER', 48387),
        ('REEVES', 48389),
        ('REFUGIO', 48391),
        ('ROBERTS', 48393),
        ('ROBERTSON', 48395),
        ('ROCKWALL', 48397),
        ('RUNNELS', 48399),
        ('RUSK', 48401),
        ('SABINE', 48403),
        ('SAN AUGUSTINE', 48405),
        ('SAN JACINTO', 48407),
        ('SAN PATRICIO', 48409),
        ('SAN SABA', 48411),
        ('SCHLEICHER', 48413),
        ('SCURRY', 48415),
        ('SHACKELFORD', 48417),
        ('SHELBY', 48419),
        ('SHERMAN', 48421),
        ('SMITH', 48423),
        ('SOMERVELL', 48425),
        ('STARR', 48427),
        ('STEPHENS', 48429),
        ('STERLING', 48431),
        ('STONEWALL', 48433),
        ('SUTTON', 48435),
        ('SWISHER', 48437),
        ('TARRANT', 48439),
        ('TAYLOR', 48441),
        ('TERRELL', 48443),
        ('TERRY', 48445),
        ('THROCKMORTON', 48447),
        ('TITUS', 48449),
        ('TOM GREEN', 48451),
        ('TRAVIS', 48453),
        ('TRINITY', 48455),
        ('TYLER', 48457),
        ('UPSHUR', 48459),
        ('UPTON', 48461),
        ('UVALDE', 48463),
        ('VAL VERDE', 48465),
        ('VAN ZANDT', 48467),
        ('VICTORIA', 48469),
        ('WALKER', 48471),
        ('WALLER', 48473),
        ('WARD', 48475),
        ('WASHINGTON', 48477),
        ('WEBB', 48479),
        ('WHARTON', 48481),
        ('WHEELER', 48483),
        ('WICHITA', 48485),
        ('WILBARGER', 48487),
        ('WILLACY', 48489),
        ('WILLIAMSON', 48491),
        ('WILSON', 48493),
        ('WINKLER', 48495),
        ('WISE', 48497),
        ('WOOD', 48499),
        ('YOAKUM', 48501),
        ('YOUNG', 48503),
        ('ZAPATA', 48505),
        ('ZAVALA', 48507),
    )

    df = pandas.DataFrame(np.array(codes))
    df = df.rename(columns={0: 'name', 1: 'fips'})
    df['fips'] = df['fips'].astype(int)
    return df


def _get_text_url(date):
    return 'http://twc.tamu.edu/weather_images/summ/summ%s.txt' % date.strftime('%Y%m%d')

def _get_csv_url(date):
    return 'http://twc.tamu.edu/weather_images/summ/summ%s.csv' % date.strftime('%Y%m%d')

def _parse_text_file(data_file):
    """
    example:
        COUNTY                        KBDI_AVG   KBDI_MAX    KBDI_MIN
                ----------------------------------------------------------------
                ANDERSON                         262       485        47
                ANDREWS                          485       614       357
                ...
    """

    dtype = [
        ('county', '|U15'),
        ('avg', 'i4'),
        ('max', 'i4'),
        ('min', 'i4'),
    ]

    if not data_file.readline().lower().startswith(b'county'):
        return pandas.DataFrame()
    data_file.seek(0)

    data_array = np.genfromtxt(
        data_file, delimiter=[31, 11, 11, 11], dtype=dtype, skip_header=2,
        skip_footer=1, autostrip=True)
    dataframe = pandas.DataFrame(data_array)
    return dataframe

def _parse_csv_file(data_file):
    """
    example:
        County,Min,Max,Average,Change
        Anderson,429,684,559,+5
        Andrews,92,356,168,+7
    """

    if not data_file.readline().lower().startswith(b'county'):
        return pandas.DataFrame()
    data_file.seek(0)

    dataframe = pandas.read_csv(data_file)
    dataframe.columns = dataframe.columns.str.lower()
    dataframe = dataframe.rename(columns={'average':'avg'})
    dataframe.county = dataframe.county.str.upper()
    dataframe = dataframe[['county','avg','max','min']]

    return dataframe

def _open_data_file(url, data_dir):
    """returns an open file handle for a data file; downloading if necessary or
    otherwise using a previously downloaded file
    """
    file_name = url.rsplit('/', 1)[-1]
    file_path = os.path.join(data_dir, file_name)
    return util.open_file_for_url(url, file_path, check_modified=True, use_bytes=True)