1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
"""
ulmo.usace.swtwc.core
~~~~~~~~~~~~~~~~~~~~~
This module provides access to data provided by the `United States Army
Corps of Engineers`_ `Tulsa District Water Control`_ web site.
.. _United States Army Corps of Engineers: http://www.usace.army.mil/
.. _Tulsa District Water Control: http://www.swt-wc.usace.army.mil/
"""
from future import standard_library
standard_library.install_aliases()
from builtins import str
from builtins import zip
from builtins import range
import datetime
import os.path
from bs4 import BeautifulSoup
import numpy as np
import requests
import pandas
from ulmo import util
try:
import io as StringIO
except ImportError:
from cStringIO import StringIO
USACE_SWTWC_DIR = os.path.join(util.get_ulmo_dir(), 'usace/swtwc')
def get_station_data(station_code, date=None, as_dataframe=False):
"""Fetches data for a station at a given date.
Parameters
----------
station_code: str
The station code to fetch data for. A list of stations can be retrieved with
``get_stations()``
date : ``None`` or date (see :ref:`dates-and-times`)
The date of the data to be queried. If date is ``None`` (default), then
data for the current day is retreived.
as_dataframe : bool
This determines what format values are returned as. If ``False``
(default), the values dict will be a dict with timestamps as keys mapped
to a dict of gauge variables and values. If ``True`` then the values
dict will be a pandas.DataFrame object containing the equivalent
information.
Returns
-------
data_dict : dict
A dict containing station information and values.
"""
station_dict = {}
if date is None:
date_str = 'current'
year = datetime.date.today().year
else:
date = util.convert_date(date)
date_str = date.strftime('%Y%m%d')
year = date.year
filename = '{}.{}.html'.format(station_code, date_str)
data_url = 'http://www.swt-wc.usace.army.mil/webdata/gagedata/' + filename
# requests without User-Agent header get rejected
headers = {
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36'
}
resp = requests.get(data_url, headers=headers)
soup = BeautifulSoup(resp.content)
pre = soup.find('pre')
if pre is None:
error_msg = 'no data could be found for station code %(station_code)s and date %(date)s (url: %(data_url)s)' % {
'date': date,
'data_url': data_url,
'station_code': station_code,
}
raise ValueError(error_msg)
sio = StringIO.StringIO(str(pre.text.strip()))
first_line = sio.readline()
split = first_line[8:].strip().split()
station_dict['code'] = split[0]
station_dict['description'] = ' '.join(split[1:])
second_line = sio.readline()
station_dict['station_type'] = second_line.strip().split(':')[1].strip()
notes = []
while 1:
next_line = sio.readline()
if ':' in next_line:
notes.append(next_line.strip())
else:
break
if len(notes):
station_dict['notes'] = '\n'.join(notes)
variable_names = _split_line(sio.readline()[11:], 10)
variable_units = _split_line(sio.readline()[11:], 10)
variable_sources = _split_line(sio.readline()[11:], 10)
station_dict['variables'] = dict([
(name, {'unit': unit, 'source': source})
for name, unit, source in zip(
variable_names, variable_units, variable_sources)
])
station_dict['timezone'] = sio.readline().strip().strip('()')
column_names = ['datetime'] + variable_names
widths = [14] + ([10] * len(variable_names))
converters = dict([
(variable_name, lambda x: float(x) if x != '----' else np.nan)
for variable_name in variable_names
])
date_parser = lambda x: _convert_datetime(x, year)
dataframe = pandas.read_fwf(
sio, names=column_names, widths=widths, index_col=['datetime'],
na_values=['----'], converters=converters, parse_dates=True,
date_parser=date_parser)
# parse out rows that are all nans (e.g. end of "current" page)
dataframe = dataframe[~np.isnan(dataframe.T.sum())]
if as_dataframe:
station_dict['values'] = dataframe
else:
station_dict['values'] = util.dict_from_dataframe(dataframe)
return station_dict
def get_stations():
"""Fetches a list of station codes and descriptions.
Returns
-------
stations_dict : dict
a python dict with station codes mapped to station information
"""
stations_url = 'http://www.swt-wc.usace.army.mil/shefids.htm'
headers = {
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36'
}
resp = requests.get(stations_url, headers=headers)
soup = BeautifulSoup(resp.content)
pre = soup.find('pre')
links = pre.find_all('a')
stations = [
_parse_station_link(link) for link in links
]
return dict([
(station['code'], station)
for station in stations
])
def _convert_datetime(s, year):
fmt = '%m/%d %H:%M'
return datetime.datetime.strptime(s, fmt).replace(year=year)
def _split_line(line, n):
return [line[i:i + n].strip() for i in range(0, len(line), n)][:-1]
def _parse_station_link(link):
return {
'code': link.text,
'description': link.next_sibling.strip(),
}
def _to_underscore(spaced):
return spaced.sub(' ', '_').sub('(', '').sub(')', '').lower()
|