1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
import typing
import numpy as np
import pandas as pd
def _aggregate_data(df, subset_size, sum_over):
"""
Returns
-------
df : DataFrame
full data frame
aggregated : Series
aggregates
"""
_SUBSET_SIZE_VALUES = ["auto", "count", "sum"]
if subset_size not in _SUBSET_SIZE_VALUES:
raise ValueError(
f"subset_size should be one of {_SUBSET_SIZE_VALUES}."
f" Got {repr(subset_size)}"
)
if df.ndim == 1:
# Series
input_name = df.name
df = pd.DataFrame({"_value": df})
if subset_size == "auto" and not df.index.is_unique:
raise ValueError(
'subset_size="auto" cannot be used for a '
"Series with non-unique groups."
)
if sum_over is not None:
raise ValueError("sum_over is not applicable when the input is a " "Series")
sum_over = False if subset_size == "count" else "_value"
else:
# DataFrame
if sum_over is False:
raise ValueError("Unsupported value for sum_over: False")
elif subset_size == "auto" and sum_over is None:
sum_over = False
elif subset_size == "count":
if sum_over is not None:
raise ValueError(
"sum_over cannot be set if subset_size=%r" % subset_size
)
sum_over = False
elif subset_size == "sum" and sum_over is None:
raise ValueError(
"sum_over should be a field name if "
'subset_size="sum" and a DataFrame is '
"provided."
)
gb = df.groupby(level=list(range(df.index.nlevels)), sort=False)
if sum_over is False:
aggregated = gb.size()
aggregated.name = "size"
elif hasattr(sum_over, "lower"):
aggregated = gb[sum_over].sum()
else:
raise ValueError("Unsupported value for sum_over: %r" % sum_over)
if aggregated.name == "_value":
aggregated.name = input_name
return df, aggregated
def _check_index(df):
# check all indices are boolean
if not all({True, False} >= set(level) for level in df.index.levels):
raise ValueError(
"The DataFrame has values in its index that are not " "boolean"
)
df = df.copy(deep=False)
# XXX: this may break if input is not MultiIndex
kw = {
"levels": [x.astype(bool) for x in df.index.levels],
"names": df.index.names,
}
if hasattr(df.index, "codes"):
# compat for pandas <= 0.20
kw["codes"] = df.index.codes
else:
kw["labels"] = df.index.labels
df.index = pd.MultiIndex(**kw)
return df
def _scalar_to_list(val):
if not isinstance(val, (typing.Sequence, set)) or isinstance(val, str):
val = [val]
return val
def _check_percent(value, agg):
if not isinstance(value, str):
return value
try:
if value.endswith("%") and 0 <= float(value[:-1]) <= 100:
return float(value[:-1]) / 100 * agg.sum()
except ValueError:
pass
raise ValueError(
f"String value must be formatted as percentage between 0 and 100. Got {value}"
)
def _get_subset_mask(
agg,
min_subset_size,
max_subset_size,
max_subset_rank,
min_degree,
max_degree,
present,
absent,
):
"""Get a mask over subsets based on size, degree or category presence"""
min_subset_size = _check_percent(min_subset_size, agg)
max_subset_size = _check_percent(max_subset_size, agg)
subset_mask = True
if min_subset_size is not None:
subset_mask = np.logical_and(subset_mask, agg >= min_subset_size)
if max_subset_size is not None:
subset_mask = np.logical_and(subset_mask, agg <= max_subset_size)
if max_subset_rank is not None:
subset_mask = np.logical_and(
subset_mask, agg.rank(method="min", ascending=False) <= max_subset_rank
)
if (min_degree is not None and min_degree >= 0) or max_degree is not None:
degree = agg.index.to_frame().sum(axis=1)
if min_degree is not None:
subset_mask = np.logical_and(subset_mask, degree >= min_degree)
if max_degree is not None:
subset_mask = np.logical_and(subset_mask, degree <= max_degree)
if present is not None:
for col in _scalar_to_list(present):
subset_mask = np.logical_and(
subset_mask, agg.index.get_level_values(col).values
)
if absent is not None:
for col in _scalar_to_list(absent):
exclude_mask = np.logical_not(agg.index.get_level_values(col).values)
subset_mask = np.logical_and(subset_mask, exclude_mask)
return subset_mask
def _filter_subsets(
df,
agg,
min_subset_size,
max_subset_size,
max_subset_rank,
min_degree,
max_degree,
present,
absent,
):
subset_mask = _get_subset_mask(
agg,
min_subset_size=min_subset_size,
max_subset_size=max_subset_size,
max_subset_rank=max_subset_rank,
min_degree=min_degree,
max_degree=max_degree,
present=present,
absent=absent,
)
if subset_mask is True:
return df, agg
agg = agg[subset_mask]
df = df[df.index.isin(agg.index)]
return df, agg
class QueryResult:
"""Container for reformatted data and aggregates
Attributes
----------
data : DataFrame
Selected samples. The index is a MultiIndex with one boolean level for
each category.
subsets : dict[frozenset, DataFrame]
Dataframes for each intersection of categories.
subset_sizes : Series
Total size of each selected subset as a series. The index is as
for `data`.
category_totals : Series
Total size of each category, regardless of selection.
total : number
Total number of samples, or sum of sum_over value.
"""
def __init__(self, data, subset_sizes, category_totals, total):
self.data = data
self.subset_sizes = subset_sizes
self.category_totals = category_totals
self.total = total
def __repr__(self):
return (
"QueryResult(data={data}, subset_sizes={subset_sizes}, "
"category_totals={category_totals}, total={total}".format(**vars(self))
)
@property
def subsets(self):
categories = np.asarray(self.data.index.names)
return {
frozenset(categories.take(mask)): subset_data
for mask, subset_data in self.data.groupby(
level=list(range(len(categories))), sort=False
)
}
def query(
data,
present=None,
absent=None,
min_subset_size=None,
max_subset_size=None,
max_subset_rank=None,
min_degree=None,
max_degree=None,
sort_by="degree",
sort_categories_by="cardinality",
subset_size="auto",
sum_over=None,
include_empty_subsets=False,
):
"""Transform and filter a categorised dataset
Retrieve the set of items and totals corresponding to subsets of interest.
Parameters
----------
data : pandas.Series or pandas.DataFrame
Elements associated with categories (a DataFrame), or the size of each
subset of categories (a Series).
Should have MultiIndex where each level is binary,
corresponding to category membership.
If a DataFrame, `sum_over` must be a string or False.
present : str or list of str, optional
Category or categories that must be present in subsets for styling.
absent : str or list of str, optional
Category or categories that must not be present in subsets for
styling.
min_subset_size : int or "number%", optional
Minimum size of a subset to be reported. All subsets with
a size smaller than this threshold will be omitted from
category_totals and data. This may be specified as a percentage
using a string, like "50%".
Size may be a sum of values, see `subset_size`.
.. versionchanged:: 0.9
Support percentages
max_subset_size : int or "number%", optional
Maximum size of a subset to be reported.
.. versionchanged:: 0.9
Support percentages
max_subset_rank : int, optional
Limit to the top N ranked subsets in descending order of size.
All tied subsets are included.
.. versionadded:: 0.9
min_degree : int, optional
Minimum degree of a subset to be reported.
max_degree : int, optional
Maximum degree of a subset to be reported.
sort_by : {'cardinality', 'degree', '-cardinality', '-degree',
'input', '-input'}
If 'cardinality', subset are listed from largest to smallest.
If 'degree', they are listed in order of the number of categories
intersected. If 'input', the order they appear in the data input is
used.
Prefix with '-' to reverse the ordering.
Note this affects ``subset_sizes`` but not ``data``.
sort_categories_by : {'cardinality', '-cardinality', 'input', '-input'}
Whether to sort the categories by total cardinality, or leave them
in the input data's provided order (order of index levels).
Prefix with '-' to reverse the ordering.
subset_size : {'auto', 'count', 'sum'}
Configures how to calculate the size of a subset. Choices are:
'auto' (default)
If `data` is a DataFrame, count the number of rows in each group,
unless `sum_over` is specified.
If `data` is a Series with at most one row for each group, use
the value of the Series. If `data` is a Series with more than one
row per group, raise a ValueError.
'count'
Count the number of rows in each group.
'sum'
Sum the value of the `data` Series, or the DataFrame field
specified by `sum_over`.
sum_over : str or None
If `subset_size='sum'` or `'auto'`, then the intersection size is the
sum of the specified field in the `data` DataFrame. If a Series, only
None is supported and its value is summed.
include_empty_subsets : bool (default=False)
If True, all possible category combinations will be returned in
subset_sizes, even when some are not present in data.
Returns
-------
QueryResult
Including filtered ``data``, filtered and sorted ``subset_sizes`` and
overall ``category_totals`` and ``total``.
Examples
--------
>>> from upsetplot import query, generate_samples
>>> data = generate_samples(n_samples=20)
>>> result = query(data, present="cat1", max_subset_size=4)
>>> result.category_totals
cat1 14
cat2 4
cat0 0
dtype: int64
>>> result.subset_sizes
cat1 cat2 cat0
True True False 3
Name: size, dtype: int64
>>> result.data
index value
cat1 cat2 cat0
True True False 0 2.04...
False 2 2.05...
False 10 2.55...
>>>
>>> # Sorting:
>>> query(data, min_degree=1, sort_by="degree").subset_sizes
cat1 cat2 cat0
True False False 11
False True False 1
True True False 3
Name: size, dtype: int64
>>> query(data, min_degree=1, sort_by="cardinality").subset_sizes
cat1 cat2 cat0
True False False 11
True False 3
False True False 1
Name: size, dtype: int64
>>>
>>> # Getting each subset's data
>>> result = query(data)
>>> result.subsets[frozenset({"cat1", "cat2"})]
index value
cat1 cat2 cat0
False True False 3 1.333795
>>> result.subsets[frozenset({"cat1"})]
index value
cat1 cat2 cat0
False False False 5 0.918174
False 8 1.948521
False 9 1.086599
False 13 1.105696
False 19 1.339895
"""
data, agg = _aggregate_data(data, subset_size, sum_over)
data = _check_index(data)
grand_total = agg.sum()
category_totals = [
agg[agg.index.get_level_values(name).values.astype(bool)].sum()
for name in agg.index.names
]
category_totals = pd.Series(category_totals, index=agg.index.names)
if include_empty_subsets:
nlevels = len(agg.index.levels)
if nlevels > 10:
raise ValueError(
"include_empty_subsets is supported for at most 10 categories"
)
new_agg = pd.Series(
0,
index=pd.MultiIndex.from_product(
[[False, True]] * nlevels, names=agg.index.names
),
dtype=agg.dtype,
name=agg.name,
)
new_agg.update(agg)
agg = new_agg
data, agg = _filter_subsets(
data,
agg,
min_subset_size=min_subset_size,
max_subset_size=max_subset_size,
max_subset_rank=max_subset_rank,
min_degree=min_degree,
max_degree=max_degree,
present=present,
absent=absent,
)
# sort:
if sort_categories_by in ("cardinality", "-cardinality"):
category_totals.sort_values(
ascending=sort_categories_by[:1] == "-", inplace=True
)
elif sort_categories_by == "-input":
category_totals = category_totals[::-1]
elif sort_categories_by in (None, "input"):
pass
else:
raise ValueError("Unknown sort_categories_by: %r" % sort_categories_by)
data = data.reorder_levels(category_totals.index.values)
agg = agg.reorder_levels(category_totals.index.values)
if sort_by in ("cardinality", "-cardinality"):
agg = agg.sort_values(ascending=sort_by[:1] == "-")
elif sort_by in ("degree", "-degree"):
index_tuples = sorted(
agg.index,
key=lambda x: (sum(x),) + tuple(reversed(x)),
reverse=sort_by[:1] == "-",
)
agg = agg.reindex(
pd.MultiIndex.from_tuples(index_tuples, names=agg.index.names)
)
elif sort_by == "-input":
agg = agg[::-1]
elif sort_by in (None, "input"):
pass
else:
raise ValueError("Unknown sort_by: %r" % sort_by)
return QueryResult(
data=data, subset_sizes=agg, category_totals=category_totals, total=grand_total
)
|