File: reformat.py

package info (click to toggle)
python-upsetplot 0.9.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,188 kB
  • sloc: python: 2,772; makefile: 153; sh: 12
file content (440 lines) | stat: -rw-r--r-- 14,602 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import typing

import numpy as np
import pandas as pd


def _aggregate_data(df, subset_size, sum_over):
    """
    Returns
    -------
    df : DataFrame
        full data frame
    aggregated : Series
        aggregates
    """
    _SUBSET_SIZE_VALUES = ["auto", "count", "sum"]
    if subset_size not in _SUBSET_SIZE_VALUES:
        raise ValueError(
            f"subset_size should be one of {_SUBSET_SIZE_VALUES}."
            f" Got {repr(subset_size)}"
        )
    if df.ndim == 1:
        # Series
        input_name = df.name
        df = pd.DataFrame({"_value": df})

        if subset_size == "auto" and not df.index.is_unique:
            raise ValueError(
                'subset_size="auto" cannot be used for a '
                "Series with non-unique groups."
            )
        if sum_over is not None:
            raise ValueError("sum_over is not applicable when the input is a " "Series")
        sum_over = False if subset_size == "count" else "_value"
    else:
        # DataFrame
        if sum_over is False:
            raise ValueError("Unsupported value for sum_over: False")
        elif subset_size == "auto" and sum_over is None:
            sum_over = False
        elif subset_size == "count":
            if sum_over is not None:
                raise ValueError(
                    "sum_over cannot be set if subset_size=%r" % subset_size
                )
            sum_over = False
        elif subset_size == "sum" and sum_over is None:
            raise ValueError(
                "sum_over should be a field name if "
                'subset_size="sum" and a DataFrame is '
                "provided."
            )

    gb = df.groupby(level=list(range(df.index.nlevels)), sort=False)
    if sum_over is False:
        aggregated = gb.size()
        aggregated.name = "size"
    elif hasattr(sum_over, "lower"):
        aggregated = gb[sum_over].sum()
    else:
        raise ValueError("Unsupported value for sum_over: %r" % sum_over)

    if aggregated.name == "_value":
        aggregated.name = input_name

    return df, aggregated


def _check_index(df):
    # check all indices are boolean
    if not all({True, False} >= set(level) for level in df.index.levels):
        raise ValueError(
            "The DataFrame has values in its index that are not " "boolean"
        )
    df = df.copy(deep=False)
    # XXX: this may break if input is not MultiIndex
    kw = {
        "levels": [x.astype(bool) for x in df.index.levels],
        "names": df.index.names,
    }
    if hasattr(df.index, "codes"):
        # compat for pandas <= 0.20
        kw["codes"] = df.index.codes
    else:
        kw["labels"] = df.index.labels
    df.index = pd.MultiIndex(**kw)
    return df


def _scalar_to_list(val):
    if not isinstance(val, (typing.Sequence, set)) or isinstance(val, str):
        val = [val]
    return val


def _check_percent(value, agg):
    if not isinstance(value, str):
        return value
    try:
        if value.endswith("%") and 0 <= float(value[:-1]) <= 100:
            return float(value[:-1]) / 100 * agg.sum()
    except ValueError:
        pass
    raise ValueError(
        f"String value must be formatted as percentage between 0 and 100. Got {value}"
    )


def _get_subset_mask(
    agg,
    min_subset_size,
    max_subset_size,
    max_subset_rank,
    min_degree,
    max_degree,
    present,
    absent,
):
    """Get a mask over subsets based on size, degree or category presence"""
    min_subset_size = _check_percent(min_subset_size, agg)
    max_subset_size = _check_percent(max_subset_size, agg)
    subset_mask = True
    if min_subset_size is not None:
        subset_mask = np.logical_and(subset_mask, agg >= min_subset_size)
    if max_subset_size is not None:
        subset_mask = np.logical_and(subset_mask, agg <= max_subset_size)
    if max_subset_rank is not None:
        subset_mask = np.logical_and(
            subset_mask, agg.rank(method="min", ascending=False) <= max_subset_rank
        )
    if (min_degree is not None and min_degree >= 0) or max_degree is not None:
        degree = agg.index.to_frame().sum(axis=1)
        if min_degree is not None:
            subset_mask = np.logical_and(subset_mask, degree >= min_degree)
        if max_degree is not None:
            subset_mask = np.logical_and(subset_mask, degree <= max_degree)
    if present is not None:
        for col in _scalar_to_list(present):
            subset_mask = np.logical_and(
                subset_mask, agg.index.get_level_values(col).values
            )
    if absent is not None:
        for col in _scalar_to_list(absent):
            exclude_mask = np.logical_not(agg.index.get_level_values(col).values)
            subset_mask = np.logical_and(subset_mask, exclude_mask)
    return subset_mask


def _filter_subsets(
    df,
    agg,
    min_subset_size,
    max_subset_size,
    max_subset_rank,
    min_degree,
    max_degree,
    present,
    absent,
):
    subset_mask = _get_subset_mask(
        agg,
        min_subset_size=min_subset_size,
        max_subset_size=max_subset_size,
        max_subset_rank=max_subset_rank,
        min_degree=min_degree,
        max_degree=max_degree,
        present=present,
        absent=absent,
    )

    if subset_mask is True:
        return df, agg

    agg = agg[subset_mask]
    df = df[df.index.isin(agg.index)]
    return df, agg


class QueryResult:
    """Container for reformatted data and aggregates

    Attributes
    ----------
    data : DataFrame
        Selected samples. The index is a MultiIndex with one boolean level for
        each category.
    subsets : dict[frozenset, DataFrame]
        Dataframes for each intersection of categories.
    subset_sizes : Series
        Total size of each selected subset as a series. The index is as
        for `data`.
    category_totals : Series
        Total size of each category, regardless of selection.
    total : number
        Total number of samples, or sum of sum_over value.
    """

    def __init__(self, data, subset_sizes, category_totals, total):
        self.data = data
        self.subset_sizes = subset_sizes
        self.category_totals = category_totals
        self.total = total

    def __repr__(self):
        return (
            "QueryResult(data={data}, subset_sizes={subset_sizes}, "
            "category_totals={category_totals}, total={total}".format(**vars(self))
        )

    @property
    def subsets(self):
        categories = np.asarray(self.data.index.names)
        return {
            frozenset(categories.take(mask)): subset_data
            for mask, subset_data in self.data.groupby(
                level=list(range(len(categories))), sort=False
            )
        }


def query(
    data,
    present=None,
    absent=None,
    min_subset_size=None,
    max_subset_size=None,
    max_subset_rank=None,
    min_degree=None,
    max_degree=None,
    sort_by="degree",
    sort_categories_by="cardinality",
    subset_size="auto",
    sum_over=None,
    include_empty_subsets=False,
):
    """Transform and filter a categorised dataset

    Retrieve the set of items and totals corresponding to subsets of interest.

    Parameters
    ----------
    data : pandas.Series or pandas.DataFrame
        Elements associated with categories (a DataFrame), or the size of each
        subset of categories (a Series).
        Should have MultiIndex where each level is binary,
        corresponding to category membership.
        If a DataFrame, `sum_over` must be a string or False.
    present : str or list of str, optional
        Category or categories that must be present in subsets for styling.
    absent : str or list of str, optional
        Category or categories that must not be present in subsets for
        styling.
    min_subset_size : int or "number%", optional
        Minimum size of a subset to be reported. All subsets with
        a size smaller than this threshold will be omitted from
        category_totals and data.  This may be specified as a percentage
        using a string, like "50%".
        Size may be a sum of values, see `subset_size`.

        .. versionchanged:: 0.9
            Support percentages
    max_subset_size : int or "number%", optional
        Maximum size of a subset to be reported.

        .. versionchanged:: 0.9
            Support percentages
    max_subset_rank : int, optional
        Limit to the top N ranked subsets in descending order of size.
        All tied subsets are included.

        .. versionadded:: 0.9
    min_degree : int, optional
        Minimum degree of a subset to be reported.
    max_degree : int, optional
        Maximum degree of a subset to be reported.
    sort_by : {'cardinality', 'degree', '-cardinality', '-degree',
               'input', '-input'}
        If 'cardinality', subset are listed from largest to smallest.
        If 'degree', they are listed in order of the number of categories
        intersected. If 'input', the order they appear in the data input is
        used.
        Prefix with '-' to reverse the ordering.

        Note this affects ``subset_sizes`` but not ``data``.
    sort_categories_by : {'cardinality', '-cardinality', 'input', '-input'}
        Whether to sort the categories by total cardinality, or leave them
        in the input data's provided order (order of index levels).
        Prefix with '-' to reverse the ordering.
    subset_size : {'auto', 'count', 'sum'}
        Configures how to calculate the size of a subset. Choices are:

        'auto' (default)
            If `data` is a DataFrame, count the number of rows in each group,
            unless `sum_over` is specified.
            If `data` is a Series with at most one row for each group, use
            the value of the Series. If `data` is a Series with more than one
            row per group, raise a ValueError.
        'count'
            Count the number of rows in each group.
        'sum'
            Sum the value of the `data` Series, or the DataFrame field
            specified by `sum_over`.
    sum_over : str or None
        If `subset_size='sum'` or `'auto'`, then the intersection size is the
        sum of the specified field in the `data` DataFrame. If a Series, only
        None is supported and its value is summed.
    include_empty_subsets : bool (default=False)
        If True, all possible category combinations will be returned in
        subset_sizes, even when some are not present in data.

    Returns
    -------
    QueryResult
        Including filtered ``data``, filtered and sorted ``subset_sizes`` and
        overall ``category_totals`` and ``total``.

    Examples
    --------
    >>> from upsetplot import query, generate_samples
    >>> data = generate_samples(n_samples=20)
    >>> result = query(data, present="cat1", max_subset_size=4)
    >>> result.category_totals
    cat1    14
    cat2     4
    cat0     0
    dtype: int64
    >>> result.subset_sizes
    cat1  cat2  cat0
    True  True  False    3
    Name: size, dtype: int64
    >>> result.data
                     index     value
    cat1 cat2 cat0
    True True False      0  2.04...
              False      2  2.05...
              False     10  2.55...
    >>>
    >>> # Sorting:
    >>> query(data, min_degree=1, sort_by="degree").subset_sizes
    cat1   cat2   cat0
    True   False  False    11
    False  True   False     1
    True   True   False     3
    Name: size, dtype: int64
    >>> query(data, min_degree=1, sort_by="cardinality").subset_sizes
    cat1   cat2   cat0
    True   False  False    11
           True   False     3
    False  True   False     1
    Name: size, dtype: int64
    >>>
    >>> # Getting each subset's data
    >>> result = query(data)
    >>> result.subsets[frozenset({"cat1", "cat2"})]
                index     value
    cat1  cat2 cat0
    False True False      3  1.333795
    >>> result.subsets[frozenset({"cat1"})]
                        index     value
    cat1  cat2  cat0
    False False False      5  0.918174
                False      8  1.948521
                False      9  1.086599
                False     13  1.105696
                False     19  1.339895
    """

    data, agg = _aggregate_data(data, subset_size, sum_over)
    data = _check_index(data)
    grand_total = agg.sum()
    category_totals = [
        agg[agg.index.get_level_values(name).values.astype(bool)].sum()
        for name in agg.index.names
    ]
    category_totals = pd.Series(category_totals, index=agg.index.names)

    if include_empty_subsets:
        nlevels = len(agg.index.levels)
        if nlevels > 10:
            raise ValueError(
                "include_empty_subsets is supported for at most 10 categories"
            )
        new_agg = pd.Series(
            0,
            index=pd.MultiIndex.from_product(
                [[False, True]] * nlevels, names=agg.index.names
            ),
            dtype=agg.dtype,
            name=agg.name,
        )
        new_agg.update(agg)
        agg = new_agg

    data, agg = _filter_subsets(
        data,
        agg,
        min_subset_size=min_subset_size,
        max_subset_size=max_subset_size,
        max_subset_rank=max_subset_rank,
        min_degree=min_degree,
        max_degree=max_degree,
        present=present,
        absent=absent,
    )

    # sort:
    if sort_categories_by in ("cardinality", "-cardinality"):
        category_totals.sort_values(
            ascending=sort_categories_by[:1] == "-", inplace=True
        )
    elif sort_categories_by == "-input":
        category_totals = category_totals[::-1]
    elif sort_categories_by in (None, "input"):
        pass
    else:
        raise ValueError("Unknown sort_categories_by: %r" % sort_categories_by)
    data = data.reorder_levels(category_totals.index.values)
    agg = agg.reorder_levels(category_totals.index.values)

    if sort_by in ("cardinality", "-cardinality"):
        agg = agg.sort_values(ascending=sort_by[:1] == "-")
    elif sort_by in ("degree", "-degree"):
        index_tuples = sorted(
            agg.index,
            key=lambda x: (sum(x),) + tuple(reversed(x)),
            reverse=sort_by[:1] == "-",
        )
        agg = agg.reindex(
            pd.MultiIndex.from_tuples(index_tuples, names=agg.index.names)
        )
    elif sort_by == "-input":
        agg = agg[::-1]
    elif sort_by in (None, "input"):
        pass
    else:
        raise ValueError("Unknown sort_by: %r" % sort_by)

    return QueryResult(
        data=data, subset_sizes=agg, category_totals=category_totals, total=grand_total
    )