File: decorators.py

package info (click to toggle)
python-utils 3.9.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 396 kB
  • sloc: python: 2,135; makefile: 19; sh: 5
file content (220 lines) | stat: -rw-r--r-- 5,991 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
This module provides various utility decorators for Python functions
and methods.

The decorators include:

1. `set_attributes`: Sets attributes on functions and classes.
2. `listify`: Converts any generator to a list or other collection.
3. `sample`: Limits calls to a function based on a sample rate.
4. `wraps_classmethod`: Wraps classmethods with type info from a
   regular method.

Each decorator is designed to enhance the functionality of Python
functions and methods in a simple and reusable manner.
"""

import contextlib
import functools
import logging
import random

from . import types

_T = types.TypeVar('_T')
_P = types.ParamSpec('_P')
_S = types.TypeVar('_S', covariant=True)


def set_attributes(**kwargs: types.Any) -> types.Callable[..., types.Any]:
    """Decorator to set attributes on functions and classes.

    A common usage for this pattern is the Django Admin where
    functions can get an optional short_description. To illustrate:

    Example from the Django admin using this decorator:
    https://docs.djangoproject.com/en/3.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display

    Our simplified version:

    >>> @set_attributes(short_description='Name')
    ... def upper_case_name(self, obj):
    ...     return ('%s %s' % (obj.first_name, obj.last_name)).upper()

    The standard Django version:

    >>> def upper_case_name(obj):
    ...     return ('%s %s' % (obj.first_name, obj.last_name)).upper()

    >>> upper_case_name.short_description = 'Name'

    """

    def _set_attributes(
        function: types.Callable[_P, _T],
    ) -> types.Callable[_P, _T]:
        for key, value in kwargs.items():
            setattr(function, key, value)
        return function

    return _set_attributes


def listify(
    collection: types.Callable[
        [types.Iterable[_T]], types.Collection[_T]
    ] = list,
    allow_empty: bool = True,
) -> types.Callable[
    [types.Callable[..., types.Optional[types.Iterable[_T]]]],
    types.Callable[..., types.Collection[_T]],
]:
    """
    Convert any generator to a list or other type of collection.

    >>> @listify()
    ... def generator():
    ...     yield 1
    ...     yield 2
    ...     yield 3

    >>> generator()
    [1, 2, 3]

    >>> @listify()
    ... def empty_generator():
    ...     pass

    >>> empty_generator()
    []

    >>> @listify(allow_empty=False)
    ... def empty_generator_not_allowed():
    ...     pass

    >>> empty_generator_not_allowed()  # doctest: +ELLIPSIS
    Traceback (most recent call last):
    ...
    TypeError: ... `allow_empty` is `False`

    >>> @listify(collection=set)
    ... def set_generator():
    ...     yield 1
    ...     yield 1
    ...     yield 2

    >>> set_generator()
    {1, 2}

    >>> @listify(collection=dict)
    ... def dict_generator():
    ...     yield 'a', 1
    ...     yield 'b', 2

    >>> dict_generator()
    {'a': 1, 'b': 2}
    """

    def _listify(
        function: types.Callable[..., types.Optional[types.Iterable[_T]]],
    ) -> types.Callable[..., types.Collection[_T]]:
        def __listify(
            *args: types.Any, **kwargs: types.Any
        ) -> types.Collection[_T]:
            result: types.Optional[types.Iterable[_T]] = function(
                *args, **kwargs
            )
            if result is None:
                if allow_empty:
                    return collection(iter(()))
                else:
                    raise TypeError(
                        f'{function} returned `None` and `allow_empty` '
                        'is `False`'
                    )
            else:
                return collection(result)

        return __listify

    return _listify


def sample(
    sample_rate: float,
) -> types.Callable[
    [types.Callable[_P, _T]],
    types.Callable[_P, types.Optional[_T]],
]:
    """
    Limit calls to a function based on given sample rate.
    Number of calls to the function will be roughly equal to
    sample_rate percentage.

    Usage:

    >>> @sample(0.5)
    ... def demo_function(*args, **kwargs):
    ...     return 1

    Calls to *demo_function* will be limited to 50% approximatly.
    """

    def _sample(
        function: types.Callable[_P, _T],
    ) -> types.Callable[_P, types.Optional[_T]]:
        @functools.wraps(function)
        def __sample(
            *args: _P.args, **kwargs: _P.kwargs
        ) -> types.Optional[_T]:
            if random.random() < sample_rate:
                return function(*args, **kwargs)
            else:
                logging.debug(
                    'Skipped execution of %r(%r, %r) due to sampling',
                    function,
                    args,
                    kwargs,
                )
                return None

        return __sample

    return _sample


def wraps_classmethod(
    wrapped: types.Callable[types.Concatenate[_S, _P], _T],
) -> types.Callable[
    [
        types.Callable[types.Concatenate[types.Any, _P], _T],
    ],
    types.Callable[types.Concatenate[_S, _P], _T],
]:
    """
    Like `functools.wraps`, but for wrapping classmethods with the type info
    from a regular method.
    """

    def _wraps_classmethod(
        wrapper: types.Callable[types.Concatenate[types.Any, _P], _T],
    ) -> types.Callable[types.Concatenate[_S, _P], _T]:
        # For some reason `functools.update_wrapper` fails on some test
        # runs but not while running actual code
        with contextlib.suppress(AttributeError):
            wrapper = functools.update_wrapper(
                wrapper,
                wrapped,
                assigned=tuple(
                    a
                    for a in functools.WRAPPER_ASSIGNMENTS
                    if a != '__annotations__'
                ),
            )
        if annotations := getattr(wrapped, '__annotations__', {}):
            annotations.pop('self', None)
            wrapper.__annotations__ = annotations

        return wrapper

    return _wraps_classmethod