File: README.rst

package info (click to toggle)
python-vdf 3.4-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid
  • size: 192 kB
  • sloc: python: 1,423; makefile: 48; sh: 11
file content (168 lines) | stat: -rw-r--r-- 4,943 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
| |pypi| |license| |coverage| |master_build|
| |sonar_maintainability| |sonar_reliability| |sonar_security|

Pure python module for (de)serialization to and from VDF that works just like ``json``.

Tested and works on ``py2.7``, ``py3.3+``, ``pypy`` and ``pypy3``.

VDF is Valve's KeyValue text file format

https://developer.valvesoftware.com/wiki/KeyValues

| Supported versions: ``kv1``
| Unsupported: ``kv2`` and ``kv3``

Install
-------

You can grab the latest release from https://pypi.org/project/vdf/ or via ``pip``

.. code:: bash

    pip install vdf

Install the current dev version from ``github``

.. code:: bash

    pip install git+https://github.com/ValvePython/vdf


Problems & solutions
--------------------

- There are known files that contain duplicate keys. This is supported the format and
  makes mapping to ``dict`` impossible. For this case the module provides ``vdf.VDFDict``
  that can be used as mapper instead of ``dict``. See the example section for details.

- By default de-serialization will return a ``dict``, which doesn't preserve nor guarantee
  key order on Python versions prior to 3.6, due to `hash randomization`_. If key order is
  important on old Pythons, I suggest using ``collections.OrderedDict``, or ``vdf.VDFDict``.

Example usage
-------------

For text representation

.. code:: python

    import vdf

    # parsing vdf from file or string
    d = vdf.load(open('file.txt'))
    d = vdf.loads(vdf_text)
    d = vdf.parse(open('file.txt'))
    d = vdf.parse(vdf_text)

    # dumping dict as vdf to string
    vdf_text = vdf.dumps(d)
    indented_vdf = vdf.dumps(d, pretty=True)

    # dumping dict as vdf to file
    vdf.dump(d, open('file2.txt','w'), pretty=True)


For binary representation

.. code:: python

    d = vdf.binary_loads(vdf_bytes)
    b = vdf.binary_dumps(d)

    # alternative format - VBKV

    d = vdf.binary_loads(vdf_bytes, alt_format=True)
    b = vdf.binary_dumps(d, alt_format=True)

    # VBKV with header and CRC checking

    d = vdf.vbkv_loads(vbkv_bytes)
    b = vdf.vbkv_dumps(d)

Using an alternative mapper

.. code:: python

  d = vdf.loads(vdf_string, mapper=collections.OrderedDict)
  d = vdf.loads(vdf_string, mapper=vdf.VDFDict)

``VDFDict`` works much like the regular ``dict``, except it handles duplicates and remembers
insert order. Additionally, keys can only be of type ``str``. The most important difference
is that when trying to assigning a key that already exist it will create a duplicate instead
of reassign the value to the existing key.

.. code:: python

  >>> d = vdf.VDFDict()
  >>> d['key'] = 111
  >>> d['key'] = 222
  >>> d
  VDFDict([('key', 111), ('key', 222)])
  >>> d.items()
  [('key', 111), ('key', 222)]
  >>> d['key']
  111
  >>> d[(0, 'key')]  # get the first duplicate
  111
  >>> d[(1, 'key')]  # get the second duplicate
  222
  >>> d.get_all_for('key')
  [111, 222]

  >>> d[(1, 'key')] = 123  # reassign specific duplicate
  >>> d.get_all_for('key')
  [111, 123]

  >>> d['key'] = 333
  >>> d.get_all_for('key')
  [111, 123, 333]
  >>> del d[(1, 'key')]
  >>> d.get_all_for('key')
  [111, 333]
  >>> d[(1, 'key')]
  333

  >>> print vdf.dumps(d)
  "key" "111"
  "key" "333"

  >>> d.has_duplicates()
  True
  >>> d.remove_all_for('key')
  >>> len(d)
  0
  >>> d.has_duplicates()
  False


.. |pypi| image:: https://img.shields.io/pypi/v/vdf.svg?style=flat&label=latest%20version
    :target: https://pypi.org/project/vdf/
    :alt: Latest version released on PyPi

.. |license| image:: https://img.shields.io/pypi/l/vdf.svg?style=flat&label=license
    :target: https://pypi.org/project/vdf/
    :alt: MIT License

.. |coverage| image:: https://img.shields.io/coveralls/ValvePython/vdf/master.svg?style=flat
    :target: https://coveralls.io/r/ValvePython/vdf?branch=master
    :alt: Test coverage

.. |sonar_maintainability| image:: https://sonarcloud.io/api/project_badges/measure?project=ValvePython_vdf&metric=sqale_rating
    :target: https://sonarcloud.io/dashboard?id=ValvePython_vdf
    :alt: SonarCloud Rating

.. |sonar_reliability| image:: https://sonarcloud.io/api/project_badges/measure?project=ValvePython_vdf&metric=reliability_rating
    :target: https://sonarcloud.io/dashboard?id=ValvePython_vdf
    :alt: SonarCloud Rating

.. |sonar_security| image:: https://sonarcloud.io/api/project_badges/measure?project=ValvePython_vdf&metric=security_rating
    :target: https://sonarcloud.io/dashboard?id=ValvePython_vdf
    :alt: SonarCloud Rating

.. |master_build| image:: https://github.com/ValvePython/vdf/workflows/Tests/badge.svg?branch=master
    :target: https://github.com/ValvePython/vdf/actions?query=workflow%3A%22Tests%22+branch%3Amaster
    :alt: Build status of master branch

.. _DuplicateOrderedDict: https://github.com/rossengeorgiev/dota2_notebooks/blob/master/DuplicateOrderedDict_for_VDF.ipynb

.. _hash randomization: https://docs.python.org/2/using/cmdline.html#envvar-PYTHONHASHSEED