1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
# Copyright (c) 2019-2025, Saransh Chopra, Henry Schreiner, Eduardo Rodrigues, Jonas Eschle, and Jim Pivarski.
#
# Distributed under the 3-clause BSD license, see accompanying file LICENSE
# or https://github.com/scikit-hep/vector for details.
from __future__ import annotations
import math
import pytest
import vector
sympy = pytest.importorskip("sympy")
pytestmark = pytest.mark.sympy
x, y, rho, phi, z, t = sympy.symbols("x y rho phi z t", real=True, positive=True)
values = {x: 3, y: 4, rho: 5, phi: 0, z: 10, t: 20}
def test_xy_z_t():
vec = vector.MomentumSympy4D(
vector.backends.sympy.AzimuthalSympyXY(x, y),
vector.backends.sympy.LongitudinalSympyZ(z),
vector.backends.sympy.TemporalSympyT(t),
)
assert vec.Et == t * sympy.sqrt(x**2 + y**2) / sympy.sqrt(x**2 + y**2 + z**2)
assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))
def test_xy_z_tau():
vec = vector.MomentumSympy4D(
vector.backends.sympy.AzimuthalSympyXY(x, y),
vector.backends.sympy.LongitudinalSympyZ(z),
vector.backends.sympy.TemporalSympyTau(
sympy.sqrt(sympy.Abs(-(t**2) + x**2 + y**2 + z**2))
),
)
# TODO: the expression blows up on simplifying?
assert vec.Et == sympy.sqrt(x**2 + y**2) * sympy.sqrt(
x**2 + y**2 + z**2 + sympy.Abs(-(t**2) + x**2 + y**2 + z**2)
) / sympy.sqrt(x**2 + y**2 + z**2)
assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))
def test_xy_theta_t():
vec = vector.MomentumSympy4D(
vector.backends.sympy.AzimuthalSympyXY(x, y),
vector.backends.sympy.LongitudinalSympyTheta(
sympy.acos(z / sympy.sqrt(x**2 + y**2 + z**2))
),
vector.backends.sympy.TemporalSympyT(t),
)
assert vec.Et.simplify() == t * sympy.sqrt(x**2 + y**2) / sympy.sqrt(
x**2 + y**2 + z**2
)
assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))
def test_xy_theta_tau():
vec = vector.MomentumSympy4D(
vector.backends.sympy.AzimuthalSympyXY(x, y),
vector.backends.sympy.LongitudinalSympyTheta(
sympy.acos(z / sympy.sqrt(x**2 + y**2 + z**2))
),
vector.backends.sympy.TemporalSympyTau(
sympy.sqrt(sympy.Abs(-(t**2) + x**2 + y**2 + z**2))
),
)
assert vec.Et.simplify() == sympy.sqrt(x**2 + y**2) * sympy.sqrt(
x**2 + y**2 + z**2 + sympy.Abs(-(t**2) + x**2 + y**2 + z**2)
) / sympy.sqrt(x**2 + y**2 + z**2)
assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))
def test_xy_eta_t():
vec = vector.MomentumSympy4D(
vector.backends.sympy.AzimuthalSympyXY(x, y),
vector.backends.sympy.LongitudinalSympyEta(
sympy.asinh(z / sympy.sqrt(x**2 + y**2))
),
vector.backends.sympy.TemporalSympyT(t),
)
assert vec.Et.simplify() == t / sympy.sqrt(z**2 / (x**2 + y**2) + 1)
assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))
def test_xy_eta_tau():
vec = vector.MomentumSympy4D(
vector.backends.sympy.AzimuthalSympyXY(x, y),
vector.backends.sympy.LongitudinalSympyEta(
sympy.asinh(z / sympy.sqrt(x**2 + y**2))
),
vector.backends.sympy.TemporalSympyTau(
sympy.sqrt(sympy.Abs(-(t**2) + x**2 + y**2 + z**2))
),
)
assert (
sympy.simplify(
vec.Et.simplify()
- 2
* sympy.sqrt(
0.25
* (x**2 + y**2)
* (sympy.exp(2 * sympy.asinh(z / sympy.sqrt(x**2 + y**2))) + 1) ** 2
+ sympy.exp(2 * sympy.asinh(z / sympy.sqrt(x**2 + y**2)))
* sympy.Abs(-(t**2) + x**2 + y**2 + z**2)
)
/ (sympy.exp(2 * sympy.asinh(z / sympy.sqrt(x**2 + y**2))) + 1)
)
== 0
)
assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))
def test_rhophi_z_t():
vec = vector.MomentumSympy4D(
vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
vector.backends.sympy.LongitudinalSympyZ(z),
vector.backends.sympy.TemporalSympyT(t),
)
assert vec.Et.simplify() == rho * t / sympy.sqrt(rho**2 + z**2)
assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))
def test_rhophi_z_tau():
vec = vector.MomentumSympy4D(
vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
vector.backends.sympy.LongitudinalSympyZ(z),
vector.backends.sympy.TemporalSympyTau(
sympy.sqrt(sympy.Abs(rho**2 - t**2 + z**2))
),
)
assert vec.Et.simplify() == rho * sympy.sqrt(
rho**2 + z**2 + sympy.Abs(rho**2 - t**2 + z**2)
) / sympy.sqrt(rho**2 + z**2)
assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))
def test_rhophi_theta_t():
vec = vector.MomentumSympy4D(
vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
vector.backends.sympy.LongitudinalSympyTheta(
sympy.acos(z / sympy.sqrt(rho**2 + z**2))
),
vector.backends.sympy.TemporalSympyT(t),
)
assert vec.Et.simplify() == rho * t / sympy.sqrt(rho**2 + z**2)
assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))
def test_rhophi_theta_tau():
vec = vector.MomentumSympy4D(
vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
vector.backends.sympy.LongitudinalSympyTheta(
sympy.acos(z / sympy.sqrt(rho**2 + z**2))
),
vector.backends.sympy.TemporalSympyTau(
sympy.sqrt(sympy.Abs(rho**2 - t**2 + z**2))
),
)
assert vec.Et.simplify() == rho * sympy.sqrt(
rho**2 + z**2 + sympy.Abs(rho**2 - t**2 + z**2)
) / sympy.sqrt(rho**2 + z**2)
assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))
def test_rhophi_eta_t():
vec = vector.MomentumSympy4D(
vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
vector.backends.sympy.LongitudinalSympyEta(sympy.asinh(z / rho)),
vector.backends.sympy.TemporalSympyT(t),
)
assert vec.Et.simplify() == t / sympy.sqrt(1 + z**2 / rho**2)
assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))
def test_rhophi_eta_tau():
vec = vector.MomentumSympy4D(
vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
vector.backends.sympy.LongitudinalSympyEta(sympy.asinh(z / rho)),
vector.backends.sympy.TemporalSympyTau(
sympy.sqrt(sympy.Abs(rho**2 - t**2 + z**2))
),
)
assert vec.Et.simplify() == 2 * sympy.sqrt(
0.25 * rho**2 * (sympy.exp(2 * sympy.asinh(z / rho)) + 1) ** 2
+ sympy.exp(2 * sympy.asinh(z / rho)) * sympy.Abs(rho**2 - t**2 + z**2)
) / (sympy.exp(2 * sympy.asinh(z / rho)) + 1)
assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))
|