File: test_Et.py

package info (click to toggle)
python-vector 1.6.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,984 kB
  • sloc: python: 40,200; makefile: 13
file content (191 lines) | stat: -rw-r--r-- 6,842 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright (c) 2019-2025, Saransh Chopra, Henry Schreiner, Eduardo Rodrigues, Jonas Eschle, and Jim Pivarski.
#
# Distributed under the 3-clause BSD license, see accompanying file LICENSE
# or https://github.com/scikit-hep/vector for details.

from __future__ import annotations

import math

import pytest

import vector

sympy = pytest.importorskip("sympy")

pytestmark = pytest.mark.sympy

x, y, rho, phi, z, t = sympy.symbols("x y rho phi z t", real=True, positive=True)
values = {x: 3, y: 4, rho: 5, phi: 0, z: 10, t: 20}


def test_xy_z_t():
    vec = vector.MomentumSympy4D(
        vector.backends.sympy.AzimuthalSympyXY(x, y),
        vector.backends.sympy.LongitudinalSympyZ(z),
        vector.backends.sympy.TemporalSympyT(t),
    )
    assert vec.Et == t * sympy.sqrt(x**2 + y**2) / sympy.sqrt(x**2 + y**2 + z**2)
    assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))


def test_xy_z_tau():
    vec = vector.MomentumSympy4D(
        vector.backends.sympy.AzimuthalSympyXY(x, y),
        vector.backends.sympy.LongitudinalSympyZ(z),
        vector.backends.sympy.TemporalSympyTau(
            sympy.sqrt(sympy.Abs(-(t**2) + x**2 + y**2 + z**2))
        ),
    )
    # TODO: the expression blows up on simplifying?
    assert vec.Et == sympy.sqrt(x**2 + y**2) * sympy.sqrt(
        x**2 + y**2 + z**2 + sympy.Abs(-(t**2) + x**2 + y**2 + z**2)
    ) / sympy.sqrt(x**2 + y**2 + z**2)
    assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))


def test_xy_theta_t():
    vec = vector.MomentumSympy4D(
        vector.backends.sympy.AzimuthalSympyXY(x, y),
        vector.backends.sympy.LongitudinalSympyTheta(
            sympy.acos(z / sympy.sqrt(x**2 + y**2 + z**2))
        ),
        vector.backends.sympy.TemporalSympyT(t),
    )
    assert vec.Et.simplify() == t * sympy.sqrt(x**2 + y**2) / sympy.sqrt(
        x**2 + y**2 + z**2
    )
    assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))


def test_xy_theta_tau():
    vec = vector.MomentumSympy4D(
        vector.backends.sympy.AzimuthalSympyXY(x, y),
        vector.backends.sympy.LongitudinalSympyTheta(
            sympy.acos(z / sympy.sqrt(x**2 + y**2 + z**2))
        ),
        vector.backends.sympy.TemporalSympyTau(
            sympy.sqrt(sympy.Abs(-(t**2) + x**2 + y**2 + z**2))
        ),
    )
    assert vec.Et.simplify() == sympy.sqrt(x**2 + y**2) * sympy.sqrt(
        x**2 + y**2 + z**2 + sympy.Abs(-(t**2) + x**2 + y**2 + z**2)
    ) / sympy.sqrt(x**2 + y**2 + z**2)
    assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))


def test_xy_eta_t():
    vec = vector.MomentumSympy4D(
        vector.backends.sympy.AzimuthalSympyXY(x, y),
        vector.backends.sympy.LongitudinalSympyEta(
            sympy.asinh(z / sympy.sqrt(x**2 + y**2))
        ),
        vector.backends.sympy.TemporalSympyT(t),
    )
    assert vec.Et.simplify() == t / sympy.sqrt(z**2 / (x**2 + y**2) + 1)
    assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))


def test_xy_eta_tau():
    vec = vector.MomentumSympy4D(
        vector.backends.sympy.AzimuthalSympyXY(x, y),
        vector.backends.sympy.LongitudinalSympyEta(
            sympy.asinh(z / sympy.sqrt(x**2 + y**2))
        ),
        vector.backends.sympy.TemporalSympyTau(
            sympy.sqrt(sympy.Abs(-(t**2) + x**2 + y**2 + z**2))
        ),
    )
    assert (
        sympy.simplify(
            vec.Et.simplify()
            - 2
            * sympy.sqrt(
                0.25
                * (x**2 + y**2)
                * (sympy.exp(2 * sympy.asinh(z / sympy.sqrt(x**2 + y**2))) + 1) ** 2
                + sympy.exp(2 * sympy.asinh(z / sympy.sqrt(x**2 + y**2)))
                * sympy.Abs(-(t**2) + x**2 + y**2 + z**2)
            )
            / (sympy.exp(2 * sympy.asinh(z / sympy.sqrt(x**2 + y**2))) + 1)
        )
        == 0
    )
    assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))


def test_rhophi_z_t():
    vec = vector.MomentumSympy4D(
        vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
        vector.backends.sympy.LongitudinalSympyZ(z),
        vector.backends.sympy.TemporalSympyT(t),
    )
    assert vec.Et.simplify() == rho * t / sympy.sqrt(rho**2 + z**2)
    assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))


def test_rhophi_z_tau():
    vec = vector.MomentumSympy4D(
        vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
        vector.backends.sympy.LongitudinalSympyZ(z),
        vector.backends.sympy.TemporalSympyTau(
            sympy.sqrt(sympy.Abs(rho**2 - t**2 + z**2))
        ),
    )
    assert vec.Et.simplify() == rho * sympy.sqrt(
        rho**2 + z**2 + sympy.Abs(rho**2 - t**2 + z**2)
    ) / sympy.sqrt(rho**2 + z**2)
    assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))


def test_rhophi_theta_t():
    vec = vector.MomentumSympy4D(
        vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
        vector.backends.sympy.LongitudinalSympyTheta(
            sympy.acos(z / sympy.sqrt(rho**2 + z**2))
        ),
        vector.backends.sympy.TemporalSympyT(t),
    )
    assert vec.Et.simplify() == rho * t / sympy.sqrt(rho**2 + z**2)
    assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))


def test_rhophi_theta_tau():
    vec = vector.MomentumSympy4D(
        vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
        vector.backends.sympy.LongitudinalSympyTheta(
            sympy.acos(z / sympy.sqrt(rho**2 + z**2))
        ),
        vector.backends.sympy.TemporalSympyTau(
            sympy.sqrt(sympy.Abs(rho**2 - t**2 + z**2))
        ),
    )
    assert vec.Et.simplify() == rho * sympy.sqrt(
        rho**2 + z**2 + sympy.Abs(rho**2 - t**2 + z**2)
    ) / sympy.sqrt(rho**2 + z**2)
    assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))


def test_rhophi_eta_t():
    vec = vector.MomentumSympy4D(
        vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
        vector.backends.sympy.LongitudinalSympyEta(sympy.asinh(z / rho)),
        vector.backends.sympy.TemporalSympyT(t),
    )
    assert vec.Et.simplify() == t / sympy.sqrt(1 + z**2 / rho**2)
    assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))


def test_rhophi_eta_tau():
    vec = vector.MomentumSympy4D(
        vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
        vector.backends.sympy.LongitudinalSympyEta(sympy.asinh(z / rho)),
        vector.backends.sympy.TemporalSympyTau(
            sympy.sqrt(sympy.Abs(rho**2 - t**2 + z**2))
        ),
    )
    assert vec.Et.simplify() == 2 * sympy.sqrt(
        0.25 * rho**2 * (sympy.exp(2 * sympy.asinh(z / rho)) + 1) ** 2
        + sympy.exp(2 * sympy.asinh(z / rho)) * sympy.Abs(rho**2 - t**2 + z**2)
    ) / (sympy.exp(2 * sympy.asinh(z / rho)) + 1)
    assert vec.Et.subs(values).evalf() == pytest.approx(math.sqrt(80))