1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
|
# Copyright (c) 2019-2025, Saransh Chopra, Henry Schreiner, Eduardo Rodrigues, Jonas Eschle, and Jim Pivarski.
#
# Distributed under the 3-clause BSD license, see accompanying file LICENSE
# or https://github.com/scikit-hep/vector for details.
from __future__ import annotations
import math
import pytest
import vector
sympy = pytest.importorskip("sympy")
pytestmark = pytest.mark.sympy
x, y, rho, phi, theta = sympy.symbols("x y rho phi theta", real=True)
values = {x: 3, y: 4, rho: 5, phi: 0, theta: 0.4636476090008061}
def test_xy_z():
vec = vector.VectorSympy3D(
azimuthal=vector.backends.sympy.AzimuthalSympyXY(x, y),
longitudinal=vector.backends.sympy.LongitudinalSympyZ(
sympy.sqrt(x**2 + y**2) / sympy.tan(theta)
),
)
assert vec.cottheta == 1 / sympy.tan(theta)
assert vec.cottheta.subs(values).evalf() == pytest.approx(
1 / math.tan(0.4636476090008061)
)
def test_xy_theta():
vec = vector.VectorSympy3D(
azimuthal=vector.backends.sympy.AzimuthalSympyXY(x, y),
longitudinal=vector.backends.sympy.LongitudinalSympyTheta(theta),
)
assert vec.cottheta == 1 / sympy.tan(theta)
assert vec.cottheta.subs(values).evalf() == pytest.approx(
1 / math.tan(0.4636476090008061)
)
def test_xy_eta():
vec = vector.VectorSympy3D(
azimuthal=vector.backends.sympy.AzimuthalSympyXY(x, y),
longitudinal=vector.backends.sympy.LongitudinalSympyEta(
-sympy.log(sympy.tan(0.5 * theta))
),
)
assert vec.cottheta == 1 / sympy.tan(2.0 * sympy.atan(sympy.tan(0.5 * theta)))
assert vec.cottheta.subs(values).evalf() == pytest.approx(
1 / math.tan(0.4636476090008061)
)
def test_rhophi_z():
vec = vector.VectorSympy3D(
azimuthal=vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
longitudinal=vector.backends.sympy.LongitudinalSympyZ(rho / sympy.tan(theta)),
)
assert vec.cottheta == 1 / sympy.tan(theta)
assert vec.cottheta.subs(values).evalf() == pytest.approx(
1 / math.tan(0.4636476090008061)
)
def test_rhophi_theta():
vec = vector.VectorSympy3D(
azimuthal=vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
longitudinal=vector.backends.sympy.LongitudinalSympyTheta(theta),
)
assert vec.cottheta == 1 / sympy.tan(theta)
assert vec.cottheta.subs(values).evalf() == pytest.approx(
1 / math.tan(0.4636476090008061)
)
def test_rhophi_eta():
vec = vector.VectorSympy3D(
azimuthal=vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
longitudinal=vector.backends.sympy.LongitudinalSympyEta(
-sympy.log(sympy.tan(0.5 * theta))
),
)
assert vec.cottheta == 1 / sympy.tan(2.0 * sympy.atan(sympy.tan(0.5 * theta)))
assert vec.cottheta.subs(values).evalf() == pytest.approx(
1 / math.tan(0.4636476090008061)
)
|