1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
|
# Copyright (c) 2019-2025, Saransh Chopra, Henry Schreiner, Eduardo Rodrigues, Jonas Eschle, and Jim Pivarski.
#
# Distributed under the 3-clause BSD license, see accompanying file LICENSE
# or https://github.com/scikit-hep/vector for details.
from __future__ import annotations
import math
import pytest
import vector
sympy = pytest.importorskip("sympy")
pytestmark = pytest.mark.sympy
x, y, rho, phi, z = sympy.symbols("x y rho phi z", real=True, positive=True)
values = {x: 3, y: 4, rho: 5, phi: 0, z: 10}
def test_xy_z():
vec = vector.VectorSympy3D(
azimuthal=vector.backends.sympy.AzimuthalSympyXY(x, y),
longitudinal=vector.backends.sympy.LongitudinalSympyZ(z),
)
assert vec.mag == sympy.sqrt(x**2 + y**2 + z**2)
assert vec.mag.subs(values).evalf() == pytest.approx(math.sqrt(125))
def test_xy_theta():
vec = vector.VectorSympy3D(
azimuthal=vector.backends.sympy.AzimuthalSympyXY(x, y),
longitudinal=vector.backends.sympy.LongitudinalSympyTheta(
sympy.acos(z / sympy.sqrt(x**2 + y**2 + z**2))
),
)
assert vec.mag.simplify() == sympy.sqrt(x**2 + y**2 + z**2)
assert vec.mag.subs(values).evalf() == pytest.approx(math.sqrt(125))
def test_xy_eta():
vec = vector.VectorSympy3D(
azimuthal=vector.backends.sympy.AzimuthalSympyXY(x, y),
longitudinal=vector.backends.sympy.LongitudinalSympyEta(
sympy.asinh(z / sympy.sqrt(x**2 + y**2))
),
)
assert vec.mag.simplify() == 1.0 * sympy.sqrt(x**2 + y**2) * sympy.sqrt(
z**2 / (x**2 + y**2) + 1
)
assert vec.mag.subs(values).evalf() == pytest.approx(math.sqrt(125))
def test_rhophi_z():
vec = vector.VectorSympy3D(
azimuthal=vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
longitudinal=vector.backends.sympy.LongitudinalSympyZ(z),
)
assert vec.mag == sympy.sqrt(rho**2 + z**2)
assert vec.mag.subs(values).evalf() == pytest.approx(math.sqrt(125))
def test_rhophi_theta():
vec = vector.VectorSympy3D(
azimuthal=vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
longitudinal=vector.backends.sympy.LongitudinalSympyTheta(
sympy.acos(z / sympy.sqrt(rho**2 + z**2))
),
)
assert vec.mag.simplify() == sympy.sqrt(rho**2 + z**2)
assert vec.mag.subs(values).evalf() == pytest.approx(math.sqrt(125))
def test_rhophi_eta():
vec = vector.VectorSympy3D(
azimuthal=vector.backends.sympy.AzimuthalSympyRhoPhi(rho, phi),
longitudinal=vector.backends.sympy.LongitudinalSympyEta(sympy.asinh(z / rho)),
)
assert vec.mag.simplify() == 1.0 * rho * sympy.sqrt(1 + z**2 / rho**2)
assert vec.mag.subs(values).evalf() == pytest.approx(math.sqrt(125))
|