File: core.py

package info (click to toggle)
python-vega-datasets 0.8%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 1,112 kB
  • sloc: python: 625; makefile: 21
file content (466 lines) | stat: -rw-r--r-- 14,831 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import os
import json
import pkgutil
import textwrap

import pandas as pd

from vega_datasets._compat import urlopen, BytesIO, bytes_decode


def _load_dataset_info():
    """This loads dataset info from three package files:

    vega_datasets/datasets.json
    vega_datasets/dataset_info.json
    vega_datasets/local_datasets.json

    It returns a dictionary with dataset information.
    """

    def load_json(path):
        raw = pkgutil.get_data("vega_datasets", path)
        return json.loads(bytes_decode(raw))

    info = load_json("datasets.json")
    descriptions = load_json("dataset_info.json")
    local_datasets = load_json("local_datasets.json")

    for name in info:
        info[name]["is_local"] = name in local_datasets
    for name in descriptions:
        info[name].update(descriptions[name])

    return info


class Dataset(object):
    """Class to load a particular dataset by name"""

    _instance_doc = """Loader for the {name} dataset.

    {data_description}

    {bundle_info}
    Dataset source: {url}

    Usage
    -----

        >>> from vega_datasets import data
        >>> {methodname} = data.{methodname}()
        >>> type({methodname})
        {return_type}

    Equivalently, you can use

        >>> {methodname} = data('{name}')

    To get the raw dataset rather than the dataframe, use

        >>> data_bytes = data.{methodname}.raw()
        >>> type(data_bytes)
        bytes

    To find the dataset url, use

        >>> data.{methodname}.url
        '{url}'
    {additional_docs}
    Attributes
    ----------
    filename : string
        The filename in which the dataset is stored
    url : string
        The full URL of the dataset at http://vega.github.io
    format : string
        The format of the dataset: usually one of {{'csv', 'tsv', 'json'}}
    pkg_filename : string
        The path to the local dataset within the vega_datasets package
    is_local : bool
        True if the dataset is available locally in the package
    filepath : string
        If is_local is True, the local file path to the dataset.

    {reference_info}
    """
    _additional_docs = ""
    _reference_info = """
    For information on this dataset, see https://github.com/vega/vega-datasets/
    """
    base_url = "https://vega.github.io/vega-datasets/data/"
    _dataset_info = _load_dataset_info()
    _pd_read_kwds = {}
    _return_type = pd.DataFrame

    @classmethod
    def init(cls, name):
        """Return an instance of this class or an appropriate subclass"""
        clsdict = {
            subcls.name: subcls
            for subcls in cls.__subclasses__()
            if hasattr(subcls, "name")
        }
        return clsdict.get(name, cls)(name)

    def __init__(self, name):
        info = self._infodict(name)
        self.name = name
        self.methodname = name.replace("-", "_")
        self.filename = info["filename"]
        self.url = self.base_url + info["filename"]
        self.format = info["format"]
        self.pkg_filename = "_data/" + self.filename
        self.is_local = info["is_local"]
        self.description = info.get("description", None)
        self.references = info.get("references", None)
        self.__doc__ = self._make_docstring()

    def _make_docstring(self):
        info = self._infodict(self.name)

        # construct, indent, and line-wrap dataset description
        description = info.get("description", "")
        if not description:
            description = (
                "This dataset is described at " "https://github.com/vega/vega-datasets/"
            )
        wrapper = textwrap.TextWrapper(
            width=70, initial_indent="", subsequent_indent=4 * " "
        )
        description = "\n".join(wrapper.wrap(description))

        # construct, indent, and join references
        references = info.get("references", [])
        references = (
            ".. [{0}] ".format(i + 1) + ref for i, ref in enumerate(references)
        )
        wrapper = textwrap.TextWrapper(
            width=70, initial_indent=4 * " ", subsequent_indent=7 * " "
        )
        references = ("\n".join(wrapper.wrap(ref)) for ref in references)
        references = "\n\n".join(references)
        if references.strip():
            references = "References\n    ----------\n" + references

        # add information about bundling of data
        if self.is_local:
            bundle_info = (
                "This dataset is bundled with vega_datasets; "
                "it can be loaded without web access."
            )
        else:
            bundle_info = (
                "This dataset is not bundled with vega_datasets; "
                "it requires web access to load."
            )

        return self._instance_doc.format(
            additional_docs=self._additional_docs,
            data_description=description,
            reference_info=references,
            bundle_info=bundle_info,
            return_type=self._return_type,
            **self.__dict__
        )

    @classmethod
    def list_datasets(cls):
        """Return a list of names of available datasets"""
        return sorted(cls._dataset_info.keys())

    @classmethod
    def list_local_datasets(cls):
        return sorted(
            name for name, info in cls._dataset_info.items() if info["is_local"]
        )

    @classmethod
    def _infodict(cls, name):
        """load the info dictionary for the given name"""
        info = cls._dataset_info.get(name, None)
        if info is None:
            raise ValueError(
                "No such dataset {0} exists, "
                "use list_datasets() to get a list "
                "of available datasets.".format(name)
            )
        return info

    def raw(self, use_local=True):
        """Load the raw dataset from remote URL or local file

        Parameters
        ----------
        use_local : boolean
            If True (default), then attempt to load the dataset locally. If
            False or if the dataset is not available locally, then load the
            data from an external URL.
        """
        if use_local and self.is_local:
            return pkgutil.get_data("vega_datasets", self.pkg_filename)
        else:
            return urlopen(self.url).read()

    def __call__(self, use_local=True, **kwargs):
        """Load and parse the dataset from remote URL or local file

        Parameters
        ----------
        use_local : boolean
            If True (default), then attempt to load the dataset locally. If
            False or if the dataset is not available locally, then load the
            data from an external URL.
        **kwargs :
            additional keyword arguments are passed to data parser (usually
            pd.read_csv or pd.read_json, depending on the format of the data
            source)

        Returns
        -------
        data :
            parsed data
        """
        datasource = BytesIO(self.raw(use_local=use_local))

        kwds = self._pd_read_kwds.copy()
        kwds.update(kwargs)

        if self.format == "json":
            return pd.read_json(datasource, **kwds)
        elif self.format == "csv":
            return pd.read_csv(datasource, **kwds)
        elif self.format == "tsv":
            kwds.setdefault("sep", "\t")
            return pd.read_csv(datasource, **kwds)
        else:
            raise ValueError(
                "Unrecognized file format: {0}. "
                "Valid options are ['json', 'csv', 'tsv']."
                "".format(self.format)
            )

    @property
    def filepath(self):
        if not self.is_local:
            raise ValueError("filepath is only valid for local datasets")
        else:
            return os.path.abspath(
                os.path.join(os.path.dirname(__file__), "_data", self.filename)
            )


class Stocks(Dataset):
    name = "stocks"
    _additional_docs = """
    For convenience, the stocks dataset supports pivoted output using the
    optional `pivoted` keyword. If pivoted is set to True, each company's
    price history will be returned in a separate column:

        >>> df = data.stocks()  # not pivoted
        >>> df.head(3)
          symbol       date  price
        0   MSFT 2000-01-01  39.81
        1   MSFT 2000-02-01  36.35
        2   MSFT 2000-03-01  43.22

        >>> df_pivoted = data.stocks(pivoted=True)
        >>> df_pivoted.head()
        symbol       AAPL   AMZN  GOOG     IBM   MSFT
        date
        2000-01-01  25.94  64.56   NaN  100.52  39.81
        2000-02-01  28.66  68.87   NaN   92.11  36.35
        2000-03-01  33.95  67.00   NaN  106.11  43.22
    """
    _pd_read_kwds = {"parse_dates": ["date"]}

    def __call__(self, pivoted=False, use_local=True, **kwargs):
        """Load and parse the dataset from remote URL or local file

        Parameters
        ----------
        pivoted : boolean, default False
            If True, then pivot data so that each stock is in its own column.
        use_local : boolean
            If True (default), then attempt to load the dataset locally. If
            False or if the dataset is not available locally, then load the
            data from an external URL.
        **kwargs :
            additional keyword arguments are passed to data parser (usually
            pd.read_csv or pd.read_json, depending on the format of the data
            source)

        Returns
        -------
        data : DataFrame
            parsed data
        """
        __doc__ = super(Stocks, self).__call__.__doc__  # noqa:F841
        data = super(Stocks, self).__call__(use_local=use_local, **kwargs)
        if pivoted:
            data = data.pivot(index="date", columns="symbol", values="price")
        return data


class Cars(Dataset):
    name = "cars"
    _pd_read_kwds = {"convert_dates": ["Year"]}


class Climate(Dataset):
    name = "climate"
    _pd_read_kwds = {"convert_dates": ["DATE"]}


class Github(Dataset):
    name = "github"
    _pd_read_kwds = {"parse_dates": ["time"]}


class IowaElectricity(Dataset):
    name = "iowa-electricity"
    _pd_read_kwds = {"parse_dates": ["year"]}


class Miserables(Dataset):
    name = "miserables"
    _return_type = tuple
    _additional_docs = """
    The miserables data contains two dataframes, ``nodes`` and ``links``,
    both of which are returned from this function.
    """

    def __call__(self, use_local=True, **kwargs):
        __doc__ = super(Miserables, self).__call__.__doc__  # noqa:F841
        dct = json.loads(bytes_decode(self.raw(use_local=use_local)), **kwargs)
        nodes = pd.DataFrame.from_records(dct["nodes"], index="index")
        links = pd.DataFrame.from_records(dct["links"])
        return nodes, links


class SeattleTemps(Dataset):
    name = "seattle-temps"
    _pd_read_kwds = {"parse_dates": ["date"]}


class SeattleWeather(Dataset):
    name = "seattle-weather"
    _pd_read_kwds = {"parse_dates": ["date"]}


class SFTemps(Dataset):
    name = "sf-temps"
    _pd_read_kwds = {"parse_dates": ["date"]}


class Sp500(Dataset):
    name = "sp500"
    _pd_read_kwds = {"parse_dates": ["date"]}


class UnemploymentAcrossIndustries(Dataset):
    name = "unemployment-across-industries"
    _pd_read_kwds = {"convert_dates": ["date"]}


class US_10M(Dataset):
    name = "us-10m"
    _return_type = dict
    _additional_docs = """
    The us-10m dataset is a TopoJSON file, with a structure that is not
    suitable for storage in a dataframe. For this reason, the loader returns
    a simple Python dictionary.
    """

    def __call__(self, use_local=True, **kwargs):
        __doc__ = super(US_10M, self).__call__.__doc__  # noqa:F841
        return json.loads(bytes_decode(self.raw(use_local=use_local)), **kwargs)


class World_110M(Dataset):
    name = "world-110m"
    _return_type = dict
    _additional_docs = """
    The world-100m dataset is a TopoJSON file, with a structure that is not
    suitable for storage in a dataframe. For this reason, the loader returns
    a simple Python dictionary.
    """

    def __call__(self, use_local=True, **kwargs):
        __doc__ = super(World_110M, self).__call__.__doc__  # noqa:F841
        return json.loads(bytes_decode(self.raw(use_local=use_local)), **kwargs)


class ZIPCodes(Dataset):
    name = "zipcodes"
    _pd_read_kwds = {"dtype": {"zip_code": "object"}}


class DataLoader(object):
    """Load a dataset from a local file or remote URL.

    There are two ways to call this; for example to load the iris dataset, you
    can call this object and pass the dataset name by string:

        >>> from vega_datasets import data
        >>> df = data('iris')

    or you can call the associated named method:

        >>> df = data.iris()

    Optionally, additional parameters can be passed to either of these

    Optional parameters
    -------------------
    return_raw : boolean
        If True, then return the raw string or bytes.
        If False (default), then return a pandas dataframe.
    use_local : boolean
        If True (default), then attempt to load the dataset locally. If
        False or if the dataset is not available locally, then load the
        data from an external URL.
    **kwargs :
        additional keyword arguments are passed to the pandas parsing function,
        either ``read_csv()`` or ``read_json()`` depending on the data format.
    """

    _datasets = {name.replace("-", "_"): name for name in Dataset.list_datasets()}

    def list_datasets(self):
        return Dataset.list_datasets()

    def __call__(self, name, return_raw=False, use_local=True, **kwargs):
        loader = getattr(self, name.replace("-", "_"))
        if return_raw:
            return loader.raw(use_local=use_local, **kwargs)
        else:
            return loader(use_local=use_local, **kwargs)

    def __getattr__(self, dataset_name):
        if dataset_name in self._datasets:
            return Dataset.init(self._datasets[dataset_name])
        else:
            raise AttributeError("No dataset named '{0}'".format(dataset_name))

    def __dir__(self):
        return list(self._datasets.keys())


class LocalDataLoader(DataLoader):
    _datasets = {name.replace("-", "_"): name for name in Dataset.list_local_datasets()}

    def list_datasets(self):
        return Dataset.list_local_datasets()

    def __getattr__(self, dataset_name):
        if dataset_name in self._datasets:
            return Dataset.init(self._datasets[dataset_name])
        elif dataset_name in DataLoader._datasets:
            raise ValueError(
                "'{0}' dataset is not available locally. To "
                "download it, use ``vega_datasets.data.{0}()"
                "".format(dataset_name)
            )
        else:
            raise AttributeError("No dataset named '{0}'".format(dataset_name))