File: ndscatter.py

package info (click to toggle)
python-vispy 0.14.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 8,840 kB
  • sloc: python: 59,436; javascript: 6,800; makefile: 69; sh: 6
file content (142 lines) | stat: -rw-r--r-- 4,318 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- coding: utf-8 -*-
# vispy: gallery 30

"""N-dimensional scatter plot with GPU-based projections.
The projection axes evolve smoothly over time, following a path on the
Lie group SO(n).
"""

from vispy import gloo
from vispy import app
from vispy.color import ColorArray
from vispy.io import load_iris
import numpy as np
from scipy.linalg import logm

VERT_SHADER = """
#version 120
attribute vec4 a_position;
attribute vec3 a_color;
attribute float a_size;

uniform vec2 u_pan;
uniform vec2 u_scale;
uniform vec4 u_vec1;
uniform vec4 u_vec2;

varying vec4 v_fg_color;
varying vec4 v_bg_color;
varying float v_radius;
varying float v_linewidth;
varying float v_antialias;

void main (void) {
    v_radius = a_size;
    v_linewidth = 1.0;
    v_antialias = 1.0;
    v_fg_color  = vec4(0.0,0.0,0.0,0.5);
    v_bg_color  = vec4(a_color,    1.0);

    vec2 position = vec2(dot(a_position, u_vec1),
                         dot(a_position, u_vec2));

    vec2 position_tr = u_scale * (position + u_pan);
    gl_Position = vec4(position_tr, 0.0, 1.0);
    gl_PointSize = 2.0*(v_radius + v_linewidth + 1.5*v_antialias);
}
"""

FRAG_SHADER = """
#version 120
varying vec4 v_fg_color;
varying vec4 v_bg_color;
varying float v_radius;
varying float v_linewidth;
varying float v_antialias;
void main()
{
    float size = 2.0*(v_radius + v_linewidth + 1.5*v_antialias);
    float t = v_linewidth/2.0-v_antialias;
    float r = length((gl_PointCoord.xy - vec2(0.5,0.5))*size);
    float d = abs(r - v_radius) - t;
    if( d < 0.0 )
        gl_FragColor = v_fg_color;
    else
    {
        float alpha = d/v_antialias;
        alpha = exp(-alpha*alpha);
        if (r > v_radius)
            gl_FragColor = vec4(v_fg_color.rgb, alpha*v_fg_color.a);
        else
            gl_FragColor = mix(v_bg_color, v_fg_color, alpha);
    }
}
"""


class Canvas(app.Canvas):
    def __init__(self):
        app.Canvas.__init__(self, position=(50, 50), keys='interactive')
        ps = self.pixel_scale

        # Load the Iris dataset and normalize.
        iris = load_iris()
        position = iris['data'].astype(np.float32)
        n, ndim = position.shape
        position -= position.mean()
        position /= np.abs(position).max()
        v_position = position*.75

        v_color = ColorArray(['orange', 'magenta', 'darkblue'])
        v_color = v_color.rgb[iris['group'], :].astype(np.float32)
        v_color *= np.random.uniform(.5, 1.5, (n, 3))
        v_color = np.clip(v_color, 0, 1)
        v_size = np.random.uniform(2*ps, 12*ps, (n, 1)).astype(np.float32)

        self.program = gloo.Program(VERT_SHADER, FRAG_SHADER)

        self.program['a_position'] = gloo.VertexBuffer(v_position)
        self.program['a_color'] = gloo.VertexBuffer(v_color)
        self.program['a_size'] = gloo.VertexBuffer(v_size)

        self.program['u_pan'] = (0., 0.)
        self.program['u_scale'] = (1., 1.)

        self.program['u_vec1'] = (1., 0., 0., 0.)
        self.program['u_vec2'] = (0., 1., 0., 0.)

        # Circulant matrix.
        circ = np.diagflat(np.ones(ndim-1), 1)
        circ[-1, 0] = -1 if ndim % 2 == 0 else 1
        self.logcirc = logm(circ)
        # We will solve the equation dX/dt = log(circ) * X in real time
        # to compute the matrix exponential expm(t*log(circ)).
        self.mat = np.eye(ndim)
        self.dt = .001
        gloo.set_state(clear_color=(1, 1, 1, 1), blend=True,
                       blend_func=('src_alpha', 'one_minus_src_alpha'))
        gloo.set_viewport(0, 0, *self.physical_size)

        self._timer = app.Timer('auto', connect=self.on_timer, start=True)
        self.show()

    def on_timer(self, event):
        # We advance the numerical solver from as many dt there have been
        # since the last update.
        for t in np.arange(0., event.dt, self.dt):
            self.mat += self.dt * np.dot(self.logcirc, self.mat).real
        # We just keep the first two columns of the matrix.
        self.program['u_vec1'] = self.mat[:, 0].squeeze()
        self.program['u_vec2'] = self.mat[:, 1].squeeze()
        self.update()

    def on_resize(self, event):
        gloo.set_viewport(0, 0, *event.physical_size)

    def on_draw(self, event):
        gloo.clear()
        self.program.draw('points')

if __name__ == '__main__':
    c = Canvas()
    app.run()