1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
# -*- coding: utf-8 -*-
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
"""Miscellaneous functions"""
import numpy as np
def _cross_2d(x, y):
"""Compute the z-component of the cross product of (arrays of) 2D vectors.
This is meant to replicate the 2D functionality of np.cross(), which is
deprecated in numpy 2.0.
x and y must have broadcastable shapes, with the last dimension being 2.
Parameters
----------
x : array
Input array 1, shape (..., 2).
y : array
Input array 2, shape (..., 2).
Returns
-------
z : array
z-component of cross products of x and y.
See: https://github.com/numpy/numpy/issues/26620
"""
if x.shape[-1] != 2 or y.shape[-1] != 2:
raise ValueError("Input arrays must have shape (..., 2)")
return x[..., 0] * y[..., 1] - x[..., 1] * y[..., 0]
def _fast_cross_3d(x, y):
"""Compute cross product between list of 3D vectors
Much faster than np.cross() when the number of cross products
becomes large (>500). This is because np.cross() methods become
less memory efficient at this stage.
Parameters
----------
x : array
Input array 1.
y : array
Input array 2.
Returns
-------
z : array
Cross product of x and y.
Notes
-----
x and y must both be 2D row vectors. One must have length 1, or both
lengths must match.
"""
assert x.ndim == 2
assert y.ndim == 2
assert x.shape[1] == 3
assert y.shape[1] == 3
assert (x.shape[0] == 1 or y.shape[0] == 1) or x.shape[0] == y.shape[0]
if max([x.shape[0], y.shape[0]]) >= 500:
return np.c_[x[:, 1] * y[:, 2] - x[:, 2] * y[:, 1],
x[:, 2] * y[:, 0] - x[:, 0] * y[:, 2],
x[:, 0] * y[:, 1] - x[:, 1] * y[:, 0]]
else:
return np.cross(x, y)
###############################################################################
# These fast normal calculation routines are adapted from mne-python
def _calculate_normals(rr, tris):
"""Efficiently compute vertex normals for triangulated surface"""
# ensure highest precision for our summation/vectorization "trick"
rr = rr.astype(np.float64)
# first, compute triangle normals
r1 = rr[tris[:, 0], :]
r2 = rr[tris[:, 1], :]
r3 = rr[tris[:, 2], :]
tri_nn = _fast_cross_3d((r2 - r1), (r3 - r1))
# Triangle normals and areas
size = np.sqrt(np.sum(tri_nn * tri_nn, axis=1))
size[size == 0] = 1.0 # prevent ugly divide-by-zero
tri_nn /= size[:, np.newaxis]
npts = len(rr)
# the following code replaces this, but is faster (vectorized):
#
# for p, verts in enumerate(tris):
# nn[verts, :] += tri_nn[p, :]
#
nn = np.zeros((npts, 3))
for verts in tris.T: # note this only loops 3x (number of verts per tri)
for idx in range(3): # x, y, z
nn[:, idx] += np.bincount(verts.astype(np.int32),
tri_nn[:, idx], minlength=npts)
size = np.sqrt(np.sum(nn * nn, axis=1))
size[size == 0] = 1.0 # prevent ugly divide-by-zero
nn /= size[:, np.newaxis]
return nn
def resize(image, shape, kind='linear'):
"""Resize an image
Parameters
----------
image : ndarray
Array of shape (N, M, ...).
shape : tuple
2-element shape.
kind : str
Interpolation, either "linear" or "nearest".
Returns
-------
scaled_image : ndarray
New image, will have dtype np.float64.
"""
image = np.array(image, float)
shape = np.array(shape, int)
if shape.ndim != 1 or shape.size != 2:
raise ValueError('shape must have two elements')
if image.ndim < 2:
raise ValueError('image must have two dimensions')
if not isinstance(kind, str) or kind not in ('nearest', 'linear'):
raise ValueError('mode must be "nearest" or "linear"')
r = np.linspace(0, image.shape[0] - 1, shape[0])
c = np.linspace(0, image.shape[1] - 1, shape[1])
if kind == 'linear':
r_0 = np.floor(r).astype(int)
c_0 = np.floor(c).astype(int)
r_1 = r_0 + 1
c_1 = c_0 + 1
top = (r_1 - r)[:, np.newaxis]
bot = (r - r_0)[:, np.newaxis]
lef = (c - c_0)[np.newaxis, :]
rig = (c_1 - c)[np.newaxis, :]
c_1 = np.minimum(c_1, image.shape[1] - 1)
r_1 = np.minimum(r_1, image.shape[0] - 1)
for arr in (top, bot, lef, rig):
arr.shape = arr.shape + (1,) * (image.ndim - 2)
out = top * rig * image[r_0][:, c_0, ...]
out += bot * rig * image[r_1][:, c_0, ...]
out += top * lef * image[r_0][:, c_1, ...]
out += bot * lef * image[r_1][:, c_1, ...]
else: # kind == 'nearest'
r = np.round(r).astype(int)
c = np.round(c).astype(int)
out = image[r][:, c, ...]
return out
|