File: curves.py

package info (click to toggle)
python-vispy 0.14.3-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,840 kB
  • sloc: python: 59,436; javascript: 6,800; makefile: 69; sh: 6
file content (399 lines) | stat: -rw-r--r-- 13,145 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#
# Anti-Grain Geometry - Version 2.4
# Copyright (C) 2002-2005 Maxim Shemanarev (McSeem)
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
#   1. Redistributions of source code must retain the above copyright
#      notice, this list of conditions and the following disclaimer.
#
#   2. Redistributions in binary form must reproduce the above copyright
#      notice, this list of conditions and the following disclaimer in
#      the documentation and/or other materials provided with the
#      distribution.
#
#   3. The name of the author may not be used to endorse or promote
#      products derived from this software without specific prior
#      written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
# IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ----------------------------------------------------------------------------
#
# Python translation by Nicolas P. Rougier
# Copyright (C) 2013 Nicolas P. Rougier. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
#    this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY NICOLAS P. ROUGIER ''AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL NICOLAS P. ROUGIER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Nicolas P. Rougier.
#

import math

import numpy as np


curve_distance_epsilon = 1e-30
curve_collinearity_epsilon = 1e-30
curve_angle_tolerance_epsilon = 0.01
curve_recursion_limit = 32
m_cusp_limit = 0.0
m_angle_tolerance = 10 * math.pi / 180.0
m_approximation_scale = 1.0
m_distance_tolerance_square = (0.5 / m_approximation_scale)**2


def calc_sq_distance(x1, y1, x2, y2):
    dx = x2 - x1
    dy = y2 - y1
    return dx * dx + dy * dy


def _curve3_recursive_bezier(points, x1, y1, x2, y2, x3, y3, level=0):
    if level > curve_recursion_limit:
        return

    # Calculate all the mid-points of the line segments
    x12 = (x1 + x2) / 2.
    y12 = (y1 + y2) / 2.
    x23 = (x2 + x3) / 2.
    y23 = (y2 + y3) / 2.
    x123 = (x12 + x23) / 2.
    y123 = (y12 + y23) / 2.

    dx = x3 - x1
    dy = y3 - y1
    d = math.fabs((x2 - x3) * dy - (y2 - y3) * dx)

    if d > curve_collinearity_epsilon:
        # Regular case
        if d * d <= m_distance_tolerance_square * (dx * dx + dy * dy):
            # If the curvature doesn't exceed the distance_tolerance value
            # we tend to finish subdivisions.
            if m_angle_tolerance < curve_angle_tolerance_epsilon:
                points.append((x123, y123))
                return

            # Angle & Cusp Condition
            da = math.fabs(
                math.atan2(y3 - y2, x3 - x2) - math.atan2(y2 - y1, x2 - x1))
            if da >= math.pi:
                da = 2 * math.pi - da

            if da < m_angle_tolerance:
                # Finally we can stop the recursion
                points.append((x123, y123))
                return
    else:
        # Collinear case
        da = dx * dx + dy * dy
        if da == 0:
            d = calc_sq_distance(x1, y1, x2, y2)
        else:
            d = ((x2 - x1) * dx + (y2 - y1) * dy) / da
            if d > 0 and d < 1:
                # Simple collinear case, 1---2---3, we can leave just two
                # endpoints
                return
            if(d <= 0):
                d = calc_sq_distance(x2, y2, x1, y1)
            elif d >= 1:
                d = calc_sq_distance(x2, y2, x3, y3)
            else:
                d = calc_sq_distance(x2, y2, x1 + d * dx, y1 + d * dy)

        if d < m_distance_tolerance_square:
            points.append((x2, y2))
            return

    # Continue subdivision
    _curve3_recursive_bezier(points, x1, y1, x12, y12, x123, y123, level + 1)
    _curve3_recursive_bezier(points, x123, y123, x23, y23, x3, y3, level + 1)


def _curve4_recursive_bezier(points, x1, y1, x2, y2, x3, y3, x4, y4, level=0):
    if level > curve_recursion_limit:
        return

    # Calculate all the mid-points of the line segments
    x12 = (x1 + x2) / 2.
    y12 = (y1 + y2) / 2.
    x23 = (x2 + x3) / 2.
    y23 = (y2 + y3) / 2.
    x34 = (x3 + x4) / 2.
    y34 = (y3 + y4) / 2.
    x123 = (x12 + x23) / 2.
    y123 = (y12 + y23) / 2.
    x234 = (x23 + x34) / 2.
    y234 = (y23 + y34) / 2.
    x1234 = (x123 + x234) / 2.
    y1234 = (y123 + y234) / 2.

    # Try to approximate the full cubic curve by a single straight line
    dx = x4 - x1
    dy = y4 - y1
    d2 = math.fabs(((x2 - x4) * dy - (y2 - y4) * dx))
    d3 = math.fabs(((x3 - x4) * dy - (y3 - y4) * dx))

    s = int((d2 > curve_collinearity_epsilon) << 1) + \
        int(d3 > curve_collinearity_epsilon)

    if s == 0:
        # All collinear OR p1==p4
        k = dx * dx + dy * dy
        if k == 0:
            d2 = calc_sq_distance(x1, y1, x2, y2)
            d3 = calc_sq_distance(x4, y4, x3, y3)

        else:
            k = 1. / k
            da1 = x2 - x1
            da2 = y2 - y1
            d2 = k * (da1 * dx + da2 * dy)
            da1 = x3 - x1
            da2 = y3 - y1
            d3 = k * (da1 * dx + da2 * dy)
            if d2 > 0 and d2 < 1 and d3 > 0 and d3 < 1:
                # Simple collinear case, 1---2---3---4
                # We can leave just two endpoints
                return

            if d2 <= 0:
                d2 = calc_sq_distance(x2, y2, x1, y1)
            elif d2 >= 1:
                d2 = calc_sq_distance(x2, y2, x4, y4)
            else:
                d2 = calc_sq_distance(x2, y2, x1 + d2 * dx, y1 + d2 * dy)

            if d3 <= 0:
                d3 = calc_sq_distance(x3, y3, x1, y1)
            elif d3 >= 1:
                d3 = calc_sq_distance(x3, y3, x4, y4)
            else:
                d3 = calc_sq_distance(x3, y3, x1 + d3 * dx, y1 + d3 * dy)

        if d2 > d3:
            if d2 < m_distance_tolerance_square:
                points.append((x2, y2))
                return
        else:
            if d3 < m_distance_tolerance_square:
                points.append((x3, y3))
                return

    elif s == 1:
        # p1,p2,p4 are collinear, p3 is significant
        if d3 * d3 <= m_distance_tolerance_square * (dx * dx + dy * dy):
            if m_angle_tolerance < curve_angle_tolerance_epsilon:
                points.append((x23, y23))
                return

            # Angle Condition
            da1 = math.fabs(
                math.atan2(y4 - y3, x4 - x3) - math.atan2(y3 - y2, x3 - x2))
            if da1 >= math.pi:
                da1 = 2 * math.pi - da1

            if da1 < m_angle_tolerance:
                points.extend([(x2, y2), (x3, y3)])
                return

            if m_cusp_limit != 0.0:
                if da1 > m_cusp_limit:
                    points.append((x3, y3))
                    return

    elif s == 2:
        # p1,p3,p4 are collinear, p2 is significant
        if d2 * d2 <= m_distance_tolerance_square * (dx * dx + dy * dy):
            if m_angle_tolerance < curve_angle_tolerance_epsilon:
                points.append((x23, y23))
                return

            # Angle Condition
            # ---------------
            da1 = math.fabs(
                math.atan2(y3 - y2, x3 - x2) - math.atan2(y2 - y1, x2 - x1))
            if da1 >= math.pi:
                da1 = 2 * math.pi - da1

            if da1 < m_angle_tolerance:
                points.extend([(x2, y2), (x3, y3)])
                return

            if m_cusp_limit != 0.0:
                if da1 > m_cusp_limit:
                    points.append((x2, y2))
                    return

    elif s == 3:
        # Regular case
        if (d2 + d3) * (d2 + d3) <= m_distance_tolerance_square * (
                dx * dx + dy * dy):
            # If the curvature doesn't exceed the distance_tolerance value
            # we tend to finish subdivisions.

            if m_angle_tolerance < curve_angle_tolerance_epsilon:
                points.append((x23, y23))
                return

            # Angle & Cusp Condition
            k = math.atan2(y3 - y2, x3 - x2)
            da1 = math.fabs(k - math.atan2(y2 - y1, x2 - x1))
            da2 = math.fabs(math.atan2(y4 - y3, x4 - x3) - k)
            if da1 >= math.pi:
                da1 = 2 * math.pi - da1
            if da2 >= math.pi:
                da2 = 2 * math.pi - da2

            if da1 + da2 < m_angle_tolerance:
                # Finally we can stop the recursion
                points.append((x23, y23))
                return

            if m_cusp_limit != 0.0:
                if da1 > m_cusp_limit:
                    points.append((x2, y2))
                    return

                if da2 > m_cusp_limit:
                    points.append((x3, y3))
                    return

    # Continue subdivision
    _curve4_recursive_bezier(
        points, x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1)
    _curve4_recursive_bezier(
        points, x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1)


def curve3_bezier(p1, p2, p3):
    """
    Generate the vertices for a quadratic Bezier curve.

    The vertices returned by this function can be passed to a LineVisual or
    ArrowVisual.

    Parameters
    ----------
    p1 : array
        2D coordinates of the start point
    p2 : array
        2D coordinates of the first curve point
    p3 : array
        2D coordinates of the end point

    Returns
    -------
    coords : list
        Vertices for the Bezier curve.

    See Also
    --------
    curve4_bezier

    Notes
    -----
    For more information about Bezier curves please refer to the `Wikipedia`_
    page.

    .. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve
    """
    x1, y1 = p1
    x2, y2 = p2
    x3, y3 = p3
    points = []
    _curve3_recursive_bezier(points, x1, y1, x2, y2, x3, y3)

    dx, dy = points[0][0] - x1, points[0][1] - y1
    if (dx * dx + dy * dy) > 1e-10:
        points.insert(0, (x1, y1))

    dx, dy = points[-1][0] - x3, points[-1][1] - y3
    if (dx * dx + dy * dy) > 1e-10:
        points.append((x3, y3))

    return np.array(points).reshape(len(points), 2)


def curve4_bezier(p1, p2, p3, p4):
    """
    Generate the vertices for a third order Bezier curve.

    The vertices returned by this function can be passed to a LineVisual or
    ArrowVisual.

    Parameters
    ----------
    p1 : array
        2D coordinates of the start point
    p2 : array
        2D coordinates of the first curve point
    p3 : array
        2D coordinates of the second curve point
    p4 : array
        2D coordinates of the end point

    Returns
    -------
    coords : list
        Vertices for the Bezier curve.

    See Also
    --------
    curve3_bezier

    Notes
    -----
    For more information about Bezier curves please refer to the `Wikipedia`_
    page.

    .. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve
    """
    x1, y1 = p1
    x2, y2 = p2
    x3, y3 = p3
    x4, y4 = p4
    points = []
    _curve4_recursive_bezier(points, x1, y1, x2, y2, x3, y3, x4, y4)

    dx, dy = points[0][0] - x1, points[0][1] - y1
    if (dx * dx + dy * dy) > 1e-10:
        points.insert(0, (x1, y1))
    dx, dy = points[-1][0] - x4, points[-1][1] - y4
    if (dx * dx + dy * dy) > 1e-10:
        points.append((x4, y4))

    return np.array(points).reshape(len(points), 2)