1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
#
# Anti-Grain Geometry - Version 2.4
# Copyright (C) 2002-2005 Maxim Shemanarev (McSeem)
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# 3. The name of the author may not be used to endorse or promote
# products derived from this software without specific prior
# written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
# IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ----------------------------------------------------------------------------
#
# Python translation by Nicolas P. Rougier
# Copyright (C) 2013 Nicolas P. Rougier. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY NICOLAS P. ROUGIER ''AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL NICOLAS P. ROUGIER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Nicolas P. Rougier.
#
import math
import numpy as np
curve_distance_epsilon = 1e-30
curve_collinearity_epsilon = 1e-30
curve_angle_tolerance_epsilon = 0.01
curve_recursion_limit = 32
m_cusp_limit = 0.0
m_angle_tolerance = 10 * math.pi / 180.0
m_approximation_scale = 1.0
m_distance_tolerance_square = (0.5 / m_approximation_scale)**2
def calc_sq_distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
return dx * dx + dy * dy
def _curve3_recursive_bezier(points, x1, y1, x2, y2, x3, y3, level=0):
if level > curve_recursion_limit:
return
# Calculate all the mid-points of the line segments
x12 = (x1 + x2) / 2.
y12 = (y1 + y2) / 2.
x23 = (x2 + x3) / 2.
y23 = (y2 + y3) / 2.
x123 = (x12 + x23) / 2.
y123 = (y12 + y23) / 2.
dx = x3 - x1
dy = y3 - y1
d = math.fabs((x2 - x3) * dy - (y2 - y3) * dx)
if d > curve_collinearity_epsilon:
# Regular case
if d * d <= m_distance_tolerance_square * (dx * dx + dy * dy):
# If the curvature doesn't exceed the distance_tolerance value
# we tend to finish subdivisions.
if m_angle_tolerance < curve_angle_tolerance_epsilon:
points.append((x123, y123))
return
# Angle & Cusp Condition
da = math.fabs(
math.atan2(y3 - y2, x3 - x2) - math.atan2(y2 - y1, x2 - x1))
if da >= math.pi:
da = 2 * math.pi - da
if da < m_angle_tolerance:
# Finally we can stop the recursion
points.append((x123, y123))
return
else:
# Collinear case
da = dx * dx + dy * dy
if da == 0:
d = calc_sq_distance(x1, y1, x2, y2)
else:
d = ((x2 - x1) * dx + (y2 - y1) * dy) / da
if d > 0 and d < 1:
# Simple collinear case, 1---2---3, we can leave just two
# endpoints
return
if(d <= 0):
d = calc_sq_distance(x2, y2, x1, y1)
elif d >= 1:
d = calc_sq_distance(x2, y2, x3, y3)
else:
d = calc_sq_distance(x2, y2, x1 + d * dx, y1 + d * dy)
if d < m_distance_tolerance_square:
points.append((x2, y2))
return
# Continue subdivision
_curve3_recursive_bezier(points, x1, y1, x12, y12, x123, y123, level + 1)
_curve3_recursive_bezier(points, x123, y123, x23, y23, x3, y3, level + 1)
def _curve4_recursive_bezier(points, x1, y1, x2, y2, x3, y3, x4, y4, level=0):
if level > curve_recursion_limit:
return
# Calculate all the mid-points of the line segments
x12 = (x1 + x2) / 2.
y12 = (y1 + y2) / 2.
x23 = (x2 + x3) / 2.
y23 = (y2 + y3) / 2.
x34 = (x3 + x4) / 2.
y34 = (y3 + y4) / 2.
x123 = (x12 + x23) / 2.
y123 = (y12 + y23) / 2.
x234 = (x23 + x34) / 2.
y234 = (y23 + y34) / 2.
x1234 = (x123 + x234) / 2.
y1234 = (y123 + y234) / 2.
# Try to approximate the full cubic curve by a single straight line
dx = x4 - x1
dy = y4 - y1
d2 = math.fabs(((x2 - x4) * dy - (y2 - y4) * dx))
d3 = math.fabs(((x3 - x4) * dy - (y3 - y4) * dx))
s = int((d2 > curve_collinearity_epsilon) << 1) + \
int(d3 > curve_collinearity_epsilon)
if s == 0:
# All collinear OR p1==p4
k = dx * dx + dy * dy
if k == 0:
d2 = calc_sq_distance(x1, y1, x2, y2)
d3 = calc_sq_distance(x4, y4, x3, y3)
else:
k = 1. / k
da1 = x2 - x1
da2 = y2 - y1
d2 = k * (da1 * dx + da2 * dy)
da1 = x3 - x1
da2 = y3 - y1
d3 = k * (da1 * dx + da2 * dy)
if d2 > 0 and d2 < 1 and d3 > 0 and d3 < 1:
# Simple collinear case, 1---2---3---4
# We can leave just two endpoints
return
if d2 <= 0:
d2 = calc_sq_distance(x2, y2, x1, y1)
elif d2 >= 1:
d2 = calc_sq_distance(x2, y2, x4, y4)
else:
d2 = calc_sq_distance(x2, y2, x1 + d2 * dx, y1 + d2 * dy)
if d3 <= 0:
d3 = calc_sq_distance(x3, y3, x1, y1)
elif d3 >= 1:
d3 = calc_sq_distance(x3, y3, x4, y4)
else:
d3 = calc_sq_distance(x3, y3, x1 + d3 * dx, y1 + d3 * dy)
if d2 > d3:
if d2 < m_distance_tolerance_square:
points.append((x2, y2))
return
else:
if d3 < m_distance_tolerance_square:
points.append((x3, y3))
return
elif s == 1:
# p1,p2,p4 are collinear, p3 is significant
if d3 * d3 <= m_distance_tolerance_square * (dx * dx + dy * dy):
if m_angle_tolerance < curve_angle_tolerance_epsilon:
points.append((x23, y23))
return
# Angle Condition
da1 = math.fabs(
math.atan2(y4 - y3, x4 - x3) - math.atan2(y3 - y2, x3 - x2))
if da1 >= math.pi:
da1 = 2 * math.pi - da1
if da1 < m_angle_tolerance:
points.extend([(x2, y2), (x3, y3)])
return
if m_cusp_limit != 0.0:
if da1 > m_cusp_limit:
points.append((x3, y3))
return
elif s == 2:
# p1,p3,p4 are collinear, p2 is significant
if d2 * d2 <= m_distance_tolerance_square * (dx * dx + dy * dy):
if m_angle_tolerance < curve_angle_tolerance_epsilon:
points.append((x23, y23))
return
# Angle Condition
# ---------------
da1 = math.fabs(
math.atan2(y3 - y2, x3 - x2) - math.atan2(y2 - y1, x2 - x1))
if da1 >= math.pi:
da1 = 2 * math.pi - da1
if da1 < m_angle_tolerance:
points.extend([(x2, y2), (x3, y3)])
return
if m_cusp_limit != 0.0:
if da1 > m_cusp_limit:
points.append((x2, y2))
return
elif s == 3:
# Regular case
if (d2 + d3) * (d2 + d3) <= m_distance_tolerance_square * (
dx * dx + dy * dy):
# If the curvature doesn't exceed the distance_tolerance value
# we tend to finish subdivisions.
if m_angle_tolerance < curve_angle_tolerance_epsilon:
points.append((x23, y23))
return
# Angle & Cusp Condition
k = math.atan2(y3 - y2, x3 - x2)
da1 = math.fabs(k - math.atan2(y2 - y1, x2 - x1))
da2 = math.fabs(math.atan2(y4 - y3, x4 - x3) - k)
if da1 >= math.pi:
da1 = 2 * math.pi - da1
if da2 >= math.pi:
da2 = 2 * math.pi - da2
if da1 + da2 < m_angle_tolerance:
# Finally we can stop the recursion
points.append((x23, y23))
return
if m_cusp_limit != 0.0:
if da1 > m_cusp_limit:
points.append((x2, y2))
return
if da2 > m_cusp_limit:
points.append((x3, y3))
return
# Continue subdivision
_curve4_recursive_bezier(
points, x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1)
_curve4_recursive_bezier(
points, x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1)
def curve3_bezier(p1, p2, p3):
"""
Generate the vertices for a quadratic Bezier curve.
The vertices returned by this function can be passed to a LineVisual or
ArrowVisual.
Parameters
----------
p1 : array
2D coordinates of the start point
p2 : array
2D coordinates of the first curve point
p3 : array
2D coordinates of the end point
Returns
-------
coords : list
Vertices for the Bezier curve.
See Also
--------
curve4_bezier
Notes
-----
For more information about Bezier curves please refer to the `Wikipedia`_
page.
.. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve
"""
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
points = []
_curve3_recursive_bezier(points, x1, y1, x2, y2, x3, y3)
dx, dy = points[0][0] - x1, points[0][1] - y1
if (dx * dx + dy * dy) > 1e-10:
points.insert(0, (x1, y1))
dx, dy = points[-1][0] - x3, points[-1][1] - y3
if (dx * dx + dy * dy) > 1e-10:
points.append((x3, y3))
return np.array(points).reshape(len(points), 2)
def curve4_bezier(p1, p2, p3, p4):
"""
Generate the vertices for a third order Bezier curve.
The vertices returned by this function can be passed to a LineVisual or
ArrowVisual.
Parameters
----------
p1 : array
2D coordinates of the start point
p2 : array
2D coordinates of the first curve point
p3 : array
2D coordinates of the second curve point
p4 : array
2D coordinates of the end point
Returns
-------
coords : list
Vertices for the Bezier curve.
See Also
--------
curve3_bezier
Notes
-----
For more information about Bezier curves please refer to the `Wikipedia`_
page.
.. _Wikipedia: https://en.wikipedia.org/wiki/B%C3%A9zier_curve
"""
x1, y1 = p1
x2, y2 = p2
x3, y3 = p3
x4, y4 = p4
points = []
_curve4_recursive_bezier(points, x1, y1, x2, y2, x3, y3, x4, y4)
dx, dy = points[0][0] - x1, points[0][1] - y1
if (dx * dx + dy * dy) > 1e-10:
points.insert(0, (x1, y1))
dx, dy = points[-1][0] - x4, points[-1][1] - y4
if (dx * dx + dy * dy) > 1e-10:
points.append((x4, y4))
return np.array(points).reshape(len(points), 2)
|