File: generation.py

package info (click to toggle)
python-vispy 0.14.3-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,840 kB
  • sloc: python: 59,436; javascript: 6,800; makefile: 69; sh: 6
file content (643 lines) | stat: -rw-r--r-- 20,941 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
# Author: Nicolas P .Rougier
# Date:   04/03/2014
# -----------------------------------------------------------------------------
from __future__ import division

import numpy as np

from .meshdata import MeshData


def create_cube():
    """Generate vertices & indices for a filled and outlined cube

    Returns
    -------
    vertices : array
        Array of vertices suitable for use as a VertexBuffer.
    filled : array
        Indices to use to produce a filled cube.
    outline : array
        Indices to use to produce an outline of the cube.
    """
    vtype = [('position', np.float32, 3),
             ('texcoord', np.float32, 2),
             ('normal', np.float32, 3),
             ('color', np.float32, 4)]
    itype = np.uint32

    # Vertices positions
    p = np.array([[1, 1, 1], [-1, 1, 1], [-1, -1, 1], [1, -1, 1],
                  [1, -1, -1], [1, 1, -1], [-1, 1, -1], [-1, -1, -1]])

    # Face Normals
    n = np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0],
                  [-1, 0, 0], [0, -1, 0], [0, 0, -1]])

    # Vertice colors
    c = np.array([[1, 1, 1, 1], [0, 1, 1, 1], [0, 0, 1, 1], [1, 0, 1, 1],
                  [1, 0, 0, 1], [1, 1, 0, 1], [0, 1, 0, 1], [0, 0, 0, 1]])

    # Texture coords
    t = np.array([[0, 0], [0, 1], [1, 1], [1, 0]])

    faces_p = [0, 1, 2, 3,
               0, 3, 4, 5,
               0, 5, 6, 1,
               1, 6, 7, 2,
               7, 4, 3, 2,
               4, 7, 6, 5]
    faces_c = [0, 1, 2, 3,
               0, 3, 4, 5,
               0, 5, 6, 1,
               1, 6, 7, 2,
               7, 4, 3, 2,
               4, 7, 6, 5]
    faces_n = [0, 0, 0, 0,
               1, 1, 1, 1,
               2, 2, 2, 2,
               3, 3, 3, 3,
               4, 4, 4, 4,
               5, 5, 5, 5]
    faces_t = [0, 1, 2, 3,
               0, 1, 2, 3,
               0, 1, 2, 3,
               3, 2, 1, 0,
               0, 1, 2, 3,
               0, 1, 2, 3]

    vertices = np.zeros(24, vtype)
    vertices['position'] = p[faces_p]
    vertices['normal'] = n[faces_n]
    vertices['color'] = c[faces_c]
    vertices['texcoord'] = t[faces_t]

    filled = np.resize(
        np.array([0, 1, 2, 0, 2, 3], dtype=itype), 6 * (2 * 3))
    filled += np.repeat(4 * np.arange(6, dtype=itype), 6)
    filled = filled.reshape((len(filled) // 3, 3))

    outline = np.resize(
        np.array([0, 1, 1, 2, 2, 3, 3, 0], dtype=itype), 6 * (2 * 4))
    outline += np.repeat(4 * np.arange(6, dtype=itype), 8)

    return vertices, filled, outline


def create_plane(width=1, height=1, width_segments=1, height_segments=1,
                 direction='+z'):
    """Generate vertices & indices for a filled and outlined plane.

    Parameters
    ----------
    width : float
        Plane width.
    height : float
        Plane height.
    width_segments : int
        Plane segments count along the width.
    height_segments : float
        Plane segments count along the height.
    direction: unicode
        ``{'-x', '+x', '-y', '+y', '-z', '+z'}``
        Direction the plane will be facing.

    Returns
    -------
    vertices : array
        Array of vertices suitable for use as a VertexBuffer.
    faces : array
        Indices to use to produce a filled plane.
    outline : array
        Indices to use to produce an outline of the plane.

    References
    ----------
    .. [1] Cabello, R. (n.d.). PlaneBufferGeometry.js. Retrieved May 12, 2015,
        from http://git.io/vU1Fh
    """
    x_grid = width_segments
    y_grid = height_segments

    x_grid1 = x_grid + 1
    y_grid1 = y_grid + 1

    # Positions, normals and texcoords.
    positions = np.zeros(x_grid1 * y_grid1 * 3)
    normals = np.zeros(x_grid1 * y_grid1 * 3)
    texcoords = np.zeros(x_grid1 * y_grid1 * 2)

    y = np.arange(y_grid1) * height / y_grid - height / 2
    x = np.arange(x_grid1) * width / x_grid - width / 2

    positions[::3] = np.tile(x, y_grid1)
    positions[1::3] = -np.repeat(y, x_grid1)

    normals[2::3] = 1

    texcoords[::2] = np.tile(np.arange(x_grid1) / x_grid, y_grid1)
    texcoords[1::2] = np.repeat(1 - np.arange(y_grid1) / y_grid, x_grid1)

    # Faces and outline.
    faces, outline = [], []
    for i_y in range(y_grid):
        for i_x in range(x_grid):
            a = i_x + x_grid1 * i_y
            b = i_x + x_grid1 * (i_y + 1)
            c = (i_x + 1) + x_grid1 * (i_y + 1)
            d = (i_x + 1) + x_grid1 * i_y

            faces.extend(((a, b, d), (b, c, d)))
            outline.extend(((a, b), (b, c), (c, d), (d, a)))

    positions = np.reshape(positions, (-1, 3))
    texcoords = np.reshape(texcoords, (-1, 2))
    normals = np.reshape(normals, (-1, 3))

    faces = np.reshape(faces, (-1, 3)).astype(np.uint32)
    outline = np.reshape(outline, (-1, 2)).astype(np.uint32)

    direction = direction.lower()
    if direction in ('-x', '+x'):
        shift, neutral_axis = 1, 0
    elif direction in ('-y', '+y'):
        shift, neutral_axis = -1, 1
    elif direction in ('-z', '+z'):
        shift, neutral_axis = 0, 2

    sign = -1 if '-' in direction else 1

    positions = np.roll(positions, shift, -1)
    normals = np.roll(normals, shift, -1) * sign
    colors = np.ravel(positions)
    colors = np.hstack((np.reshape(np.interp(colors,
                                             (np.min(colors),
                                              np.max(colors)),
                                             (0, 1)),
                                   positions.shape),
                        np.ones((positions.shape[0], 1))))
    colors[..., neutral_axis] = 0

    vertices = np.zeros(positions.shape[0],
                        [('position', np.float32, 3),
                         ('texcoord', np.float32, 2),
                         ('normal', np.float32, 3),
                         ('color', np.float32, 4)])

    vertices['position'] = positions
    vertices['texcoord'] = texcoords
    vertices['normal'] = normals
    vertices['color'] = colors

    return vertices, faces, outline


def create_box(width=1, height=1, depth=1, width_segments=1, height_segments=1,
               depth_segments=1, planes=None):
    """Generate vertices & indices for a filled and outlined box.

    Parameters
    ----------
    width : float
        Box width.
    height : float
        Box height.
    depth : float
        Box depth.
    width_segments : int
        Box segments count along the width.
    height_segments : float
        Box segments count along the height.
    depth_segments : float
        Box segments count along the depth.
    planes: array_like
        Any combination of ``{'-x', '+x', '-y', '+y', '-z', '+z'}``
        Included planes in the box construction.

    Returns
    -------
    vertices : array
        Array of vertices suitable for use as a VertexBuffer.
    faces : array
        Indices to use to produce a filled box.
    outline : array
        Indices to use to produce an outline of the box.
    """
    planes = (('+x', '-x', '+y', '-y', '+z', '-z')
              if planes is None else
              [d.lower() for d in planes])

    w_s, h_s, d_s = width_segments, height_segments, depth_segments

    planes_m = []
    if '-z' in planes:
        planes_m.append(create_plane(width, depth, w_s, d_s, '-z'))
        planes_m[-1][0]['position'][..., 2] -= height / 2
    if '+z' in planes:
        planes_m.append(create_plane(width, depth, w_s, d_s, '+z'))
        planes_m[-1][0]['position'][..., 2] += height / 2

    if '-y' in planes:
        planes_m.append(create_plane(height, width, h_s, w_s, '-y'))
        planes_m[-1][0]['position'][..., 1] -= depth / 2
    if '+y' in planes:
        planes_m.append(create_plane(height, width, h_s, w_s, '+y'))
        planes_m[-1][0]['position'][..., 1] += depth / 2

    if '-x' in planes:
        planes_m.append(create_plane(depth, height, d_s, h_s, '-x'))
        planes_m[-1][0]['position'][..., 0] -= width / 2
    if '+x' in planes:
        planes_m.append(create_plane(depth, height, d_s, h_s, '+x'))
        planes_m[-1][0]['position'][..., 0] += width / 2

    positions = np.zeros((0, 3), dtype=np.float32)
    texcoords = np.zeros((0, 2), dtype=np.float32)
    normals = np.zeros((0, 3), dtype=np.float32)

    faces = np.zeros((0, 3), dtype=np.uint32)
    outline = np.zeros((0, 2), dtype=np.uint32)

    offset = 0
    for vertices_p, faces_p, outline_p in planes_m:
        positions = np.vstack((positions, vertices_p['position']))
        texcoords = np.vstack((texcoords, vertices_p['texcoord']))
        normals = np.vstack((normals, vertices_p['normal']))

        faces = np.vstack((faces, faces_p + offset))
        outline = np.vstack((outline, outline_p + offset))
        offset += vertices_p['position'].shape[0]

    vertices = np.zeros(positions.shape[0],
                        [('position', np.float32, 3),
                         ('texcoord', np.float32, 2),
                         ('normal', np.float32, 3),
                         ('color', np.float32, 4)])

    colors = np.ravel(positions)
    colors = np.hstack((np.reshape(np.interp(colors,
                                             (np.min(colors),
                                              np.max(colors)),
                                             (0, 1)),
                                   positions.shape),
                        np.ones((positions.shape[0], 1))))

    vertices['position'] = positions
    vertices['texcoord'] = texcoords
    vertices['normal'] = normals
    vertices['color'] = colors

    return vertices, faces, outline


def _latitude(rows, cols, radius, offset):
    verts = np.empty((rows+1, cols, 3), dtype=np.float32)

    # compute vertices
    phi = (np.arange(rows+1) * np.pi / rows).reshape(rows+1, 1)
    s = radius * np.sin(phi)
    verts[..., 2] = radius * np.cos(phi)
    th = ((np.arange(cols) * 2 * np.pi / cols).reshape(1, cols))
    if offset:
        # rotate each row by 1/2 column
        th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1, 1))
    verts[..., 0] = s * np.cos(th)
    verts[..., 1] = s * np.sin(th)
    # remove redundant vertices from top and bottom
    verts = verts.reshape((rows+1)*cols, 3)[cols-1:-(cols-1)]

    # compute faces
    faces = np.empty((rows*cols*2, 3), dtype=np.uint32)
    rowtemplate1 = (((np.arange(cols).reshape(cols, 1) +
                      np.array([[1, 0, 0]])) % cols) +
                    np.array([[0, 0, cols]]))
    rowtemplate2 = (((np.arange(cols).reshape(cols, 1) +
                      np.array([[1, 0, 1]])) % cols) +
                    np.array([[0, cols, cols]]))
    for row in range(rows):
        start = row * cols * 2
        faces[start:start+cols] = rowtemplate1 + row * cols
        faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols
    # cut off zero-area triangles at top and bottom
    faces = faces[cols:-cols]

    # adjust for redundant vertices that were removed from top and bottom
    vmin = cols-1
    faces[faces < vmin] = vmin
    faces -= vmin
    vmax = verts.shape[0]-1
    faces[faces > vmax] = vmax
    return MeshData(vertices=verts, faces=faces)


def _ico(radius, subdivisions):
    # golden ratio
    t = (1.0 + np.sqrt(5.0))/2.0

    # vertices of a icosahedron
    verts = [(-1, t, 0),
             (1, t, 0),
             (-1, -t, 0),
             (1, -t, 0),
             (0, -1, t),
             (0, 1, t),
             (0, -1, -t),
             (0, 1, -t),
             (t, 0, -1),
             (t, 0, 1),
             (-t, 0, -1),
             (-t, 0, 1)]

    # faces of the icosahedron
    faces = [(0, 11, 5),
             (0, 5, 1),
             (0, 1, 7),
             (0, 7, 10),
             (0, 10, 11),
             (1, 5, 9),
             (5, 11, 4),
             (11, 10, 2),
             (10, 7, 6),
             (7, 1, 8),
             (3, 9, 4),
             (3, 4, 2),
             (3, 2, 6),
             (3, 6, 8),
             (3, 8, 9),
             (4, 9, 5),
             (2, 4, 11),
             (6, 2, 10),
             (8, 6, 7),
             (9, 8, 1)]

    def midpoint(v1, v2):
        return ((v1[0]+v2[0])/2, (v1[1]+v2[1])/2, (v1[2]+v2[2])/2)

    # subdivision
    for _ in range(subdivisions):
        for idx in range(len(faces)):
            i, j, k = faces[idx]
            a, b, c = verts[i], verts[j], verts[k]
            ab, bc, ca = midpoint(a, b), midpoint(b, c), midpoint(c, a)
            verts += [ab, bc, ca]
            ij, jk, ki = len(verts)-3, len(verts)-2, len(verts)-1
            faces.append([i, ij, ki])
            faces.append([ij, j, jk])
            faces.append([ki, jk, k])
            faces[idx] = [jk, ki, ij]
    verts = np.array(verts, dtype=np.float32)
    faces = np.array(faces, dtype=np.uint32)

    # make each vertex to lie on the sphere
    lengths = np.sqrt((verts*verts).sum(axis=1))
    verts /= lengths[:, np.newaxis]/radius
    return MeshData(vertices=verts, faces=faces)


def _cube(rows, cols, depth, radius):
    # vertices and faces of tessellated cube
    verts, faces, _ = create_box(1, 1, 1, cols, rows, depth)
    verts = verts['position']

    # make each vertex to lie on the sphere
    lengths = np.sqrt((verts*verts).sum(axis=1))
    verts /= lengths[:, np.newaxis]/radius
    return MeshData(vertices=verts, faces=faces)


def create_sphere(rows=10, cols=10, depth=10, radius=1.0, offset=True,
                  subdivisions=3, method='latitude'):
    """Create a sphere

    Parameters
    ----------
    rows : int
        Number of rows (for method='latitude' and 'cube').
    cols : int
        Number of columns (for method='latitude' and 'cube').
    depth : int
        Number of depth segments (for method='cube').
    radius : float
        Sphere radius.
    offset : bool
        Rotate each row by half a column (for method='latitude').
    subdivisions : int
        Number of subdivisions to perform (for method='ico')
    method : str
        Method for generating sphere. Accepts 'latitude' for latitude-
        longitude, 'ico' for icosahedron, and 'cube' for cube based
        tessellation.

    Returns
    -------
    sphere : MeshData
        Vertices and faces computed for a spherical surface.
    """
    if method == 'latitude':
        return _latitude(rows, cols, radius, offset)
    elif method == 'ico':
        return _ico(radius, subdivisions)
    elif method == 'cube':
        return _cube(rows, cols, depth, radius)
    else:
        raise Exception("Invalid method. Accepts: 'latitude', 'ico', 'cube'")


def create_cylinder(rows, cols, radius=[1.0, 1.0], length=1.0, offset=False):
    """Create a cylinder

    Parameters
    ----------
    rows : int
        Number of rows.
    cols : int
        Number of columns.
    radius : tuple of float
        Cylinder radii.
    length : float
        Length of the cylinder.
    offset : bool
        Rotate each row by half a column.

    Returns
    -------
    cylinder : MeshData
        Vertices and faces computed for a cylindrical surface.
    """
    verts = np.empty((rows+1, cols, 3), dtype=np.float32)
    if isinstance(radius, int):
        radius = [radius, radius]  # convert to list
    # compute vertices
    th = np.linspace(2 * np.pi, 0, cols).reshape(1, cols)
    # radius as a function of z
    r = np.linspace(radius[0], radius[1], num=rows+1,
                    endpoint=True).reshape(rows+1, 1)
    verts[..., 2] = np.linspace(0, length, num=rows+1,
                                endpoint=True).reshape(rows+1, 1)  # z
    if offset:
        # rotate each row by 1/2 column
        th = th + ((np.pi / cols) * np.arange(rows+1).reshape(rows+1, 1))
    verts[..., 0] = r * np.cos(th)  # x = r cos(th)
    verts[..., 1] = r * np.sin(th)  # y = r sin(th)
    # just reshape: no redundant vertices...
    verts = verts.reshape((rows+1)*cols, 3)
    # compute faces
    faces = np.empty((rows*cols*2, 3), dtype=np.uint32)
    rowtemplate1 = (((np.arange(cols).reshape(cols, 1) +
                      np.array([[0, 1, 0]])) % cols) +
                    np.array([[0, 0, cols]]))
    rowtemplate2 = (((np.arange(cols).reshape(cols, 1) +
                      np.array([[0, 1, 1]])) % cols) +
                    np.array([[cols, 0, cols]]))
    for row in range(rows):
        start = row * cols * 2
        faces[start:start+cols] = rowtemplate1 + row * cols
        faces[start+cols:start+(cols*2)] = rowtemplate2 + row * cols

    return MeshData(vertices=verts, faces=faces)


def create_cone(cols, radius=1.0, length=1.0):
    """Create a cone

    Parameters
    ----------
    cols : int
        Number of faces.
    radius : float
        Base cone radius.
    length : float
        Length of the cone.

    Returns
    -------
    cone : MeshData
        Vertices and faces computed for a cone surface.
    """
    verts = np.empty((cols+1, 3), dtype=np.float32)
    # compute vertexes
    th = np.linspace(2 * np.pi, 0, cols+1).reshape(1, cols+1)
    verts[:-1, 2] = 0.0
    verts[:-1, 0] = radius * np.cos(th[0, :-1])  # x = r cos(th)
    verts[:-1, 1] = radius * np.sin(th[0, :-1])  # y = r sin(th)
    # Add the extremity
    verts[-1, 0] = 0.0
    verts[-1, 1] = 0.0
    verts[-1, 2] = length
    verts = verts.reshape((cols+1), 3)  # just reshape: no redundant vertices
    # compute faces
    faces = np.empty((cols, 3), dtype=np.uint32)
    template = np.array([[0, 1]])
    for pos in range(cols):
        faces[pos, :-1] = template + pos
    faces[:, 2] = cols
    faces[-1, 1] = 0

    return MeshData(vertices=verts, faces=faces)


def create_arrow(rows, cols, radius=0.1, length=1.0,
                 cone_radius=None, cone_length=None):
    """Create a 3D arrow using a cylinder plus cone

    Parameters
    ----------
    rows : int
        Number of rows.
    cols : int
        Number of columns.
    radius : float
        Base cylinder radius.
    length : float
        Length of the arrow.
    cone_radius : float
        Radius of the cone base.
           If None, then this defaults to 2x the cylinder radius.
    cone_length : float
        Length of the cone.
           If None, then this defaults to 1/3 of the arrow length.

    Returns
    -------
    arrow : MeshData
        Vertices and faces computed for a cone surface.
    """
    # create the cylinder
    md_cyl = None
    if cone_radius is None:
        cone_radius = radius*2.0
    if cone_length is None:
        con_L = length/3.0
        cyl_L = length*2.0/3.0
    else:
        cyl_L = max(0, length - cone_length)
        con_L = min(cone_length, length)
    if cyl_L != 0:
        md_cyl = create_cylinder(rows, cols, radius=[radius, radius],
                                 length=cyl_L)
    # create the cone
    md_con = create_cone(cols, radius=cone_radius, length=con_L)
    verts = md_con.get_vertices()
    nbr_verts_con = verts.size//3
    faces = md_con.get_faces()
    if md_cyl is not None:
        trans = np.array([[0.0, 0.0, cyl_L]])
        verts = np.vstack((verts+trans, md_cyl.get_vertices()))
        faces = np.vstack((faces, md_cyl.get_faces()+nbr_verts_con))

    return MeshData(vertices=verts, faces=faces)


def create_grid_mesh(xs, ys, zs):
    """Generate vertices and indices for an implicitly connected mesh.

    The intention is that this makes it simple to generate a mesh
    from meshgrid data.

    Parameters
    ----------
    xs : ndarray
        A 2d array of x coordinates for the vertices of the mesh. Must
        have the same dimensions as ys and zs.
    ys : ndarray
        A 2d array of y coordinates for the vertices of the mesh. Must
        have the same dimensions as xs and zs.
    zs : ndarray
        A 2d array of z coordinates for the vertices of the mesh. Must
        have the same dimensions as xs and ys.

    Returns
    -------
    vertices : ndarray
        The array of vertices in the mesh.
    indices : ndarray
        The array of indices for the mesh.
    """
    shape = xs.shape
    length = shape[0] * shape[1]

    vertices = np.zeros((length, 3))

    vertices[:, 0] = xs.reshape(length)
    vertices[:, 1] = ys.reshape(length)
    vertices[:, 2] = zs.reshape(length)

    basic_indices = np.array([0, 1, 1 + shape[1], 0,
                              0 + shape[1], 1 + shape[1]],
                             dtype=np.uint32)

    inner_grid_length = (shape[0] - 1) * (shape[1] - 1)

    offsets = np.arange(inner_grid_length)
    offsets += np.repeat(np.arange(shape[0] - 1), shape[1] - 1)
    offsets = np.repeat(offsets, 6)
    indices = np.resize(basic_indices, len(offsets)) + offsets

    indices = indices.reshape((len(indices) // 3, 3))

    return vertices, indices