1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
# Author: Luke Campagnola
# -----------------------------------------------------------------------------
import struct
import zlib
import numpy as np
def _make_png(data, level=6):
"""Convert numpy array to PNG byte array.
Parameters
----------
data : numpy.ndarray
Data must be (H, W, 3 | 4) with dtype = np.ubyte (np.uint8)
level : int
https://docs.python.org/2/library/zlib.html#zlib.compress
An integer from 0 to 9 controlling the level of compression:
* 1 is fastest and produces the least compression,
* 9 is slowest and produces the most.
* 0 is no compression.
The default value is 6.
Returns
-------
png : array
PNG formatted array
"""
# Eventually we might want to use ext/png.py for this, but this
# routine *should* be faster b/c it's specialized for our use case
def mkchunk(data, name):
if isinstance(data, np.ndarray):
size = data.nbytes
else:
size = len(data)
chunk = np.empty(size + 12, dtype=np.ubyte)
chunk.data[0:4] = np.array(size, '>u4').tobytes()
chunk.data[4:8] = name.encode('ASCII')
chunk.data[8:8 + size] = data
# and-ing may not be necessary, but is done for safety:
# https://docs.python.org/3/library/zlib.html#zlib.crc32
chunk.data[-4:] = np.array(zlib.crc32(chunk[4:-4]) & 0xffffffff,
'>u4').tobytes()
return chunk
if data.dtype != np.ubyte:
raise TypeError('data.dtype must be np.ubyte (np.uint8)')
dim = data.shape[2] # Dimension
if dim not in (3, 4):
raise TypeError('data.shape[2] must be in (3, 4)')
# www.libpng.org/pub/png/spec/1.2/PNG-Chunks.html#C.IHDR
if dim == 4:
ctyp = 0b0110 # RGBA
else:
ctyp = 0b0010 # RGB
# www.libpng.org/pub/png/spec/1.2/PNG-Structure.html
header = b'\x89PNG\x0d\x0a\x1a\x0a' # header
h, w = data.shape[:2]
depth = data.itemsize * 8
ihdr = struct.pack('!IIBBBBB', w, h, depth, ctyp, 0, 0, 0)
c1 = mkchunk(ihdr, 'IHDR')
# www.libpng.org/pub/png/spec/1.2/PNG-Chunks.html#C.IDAT
# insert filter byte at each scanline
idat = np.empty((h, w * dim + 1), dtype=np.ubyte)
idat[:, 1:] = data.reshape(h, w * dim)
idat[:, 0] = 0
comp_data = zlib.compress(idat, level)
c2 = mkchunk(comp_data, 'IDAT')
c3 = mkchunk(np.empty((0,), dtype=np.ubyte), 'IEND')
# concatenate
lh = len(header)
png = np.empty(lh + c1.nbytes + c2.nbytes + c3.nbytes, dtype=np.ubyte)
png.data[:lh] = header
p = lh
for chunk in (c1, c2, c3):
png[p:p + len(chunk)] = chunk
p += chunk.nbytes
return png
def read_png(filename):
"""Read a PNG file to RGB8 or RGBA8
Requires Pillow.
Parameters
----------
filename : str
File to read.
Returns
-------
data : array
Image data.
See also
--------
write_png, imread, imsave
"""
try:
from PIL import Image
x = Image.open(filename)
try:
y = np.asarray(x)
y = np.array([yy for yy in y], np.uint8)
finally:
x.close()
return y
except ImportError:
raise RuntimeError("read_png requires the Pillow package.")
def write_png(filename, data):
"""Write a PNG file
Unlike imsave, this requires no external dependencies.
Parameters
----------
filename : str
File to save to.
data : array
Image data.
See also
--------
read_png, imread, imsave
"""
data = np.asarray(data)
if not data.ndim == 3 and data.shape[-1] in (3, 4):
raise ValueError('data must be a 3D array with last dimension 3 or 4')
with open(filename, 'wb') as f:
f.write(_make_png(data)) # Save array with make_png
def imread(filename, format=None):
"""Read image data from disk
Requires imageio or PIL.
Parameters
----------
filename : str
Filename to read.
format : str | None
Format of the file. If None, it will be inferred from the filename.
Returns
-------
data : array
Image data.
See also
--------
imsave, read_png, write_png
"""
imageio, PIL = _check_img_lib()
if imageio is not None:
return imageio.imread(filename, format)
elif PIL is not None:
im = PIL.Image.open(filename)
if im.mode == 'P':
im = im.convert()
# Make numpy array
a = np.asarray(im)
if len(a.shape) == 0:
raise MemoryError("Too little memory to convert PIL image to "
"array")
return a
else:
raise RuntimeError("imread requires the imageio or PIL package.")
def imsave(filename, im, format=None):
"""Save image data to disk
Requires imageio or PIL.
Parameters
----------
filename : str
Filename to write.
im : array
Image data.
format : str | None
Format of the file. If None, it will be inferred from the filename.
See also
--------
imread, read_png, write_png
"""
# Import imageio or PIL
imageio, PIL = _check_img_lib()
if imageio is not None:
return imageio.imsave(filename, im, format)
elif PIL is not None:
pim = PIL.Image.fromarray(im)
pim.save(filename, format)
else:
raise RuntimeError("imsave requires the imageio or PIL package.")
def _check_img_lib():
"""Utility to search for imageio or PIL"""
# Import imageio or PIL
imageio = PIL = None
try:
import imageio
except ImportError:
try:
import PIL.Image
except ImportError:
pass
return imageio, PIL
|