File: test_image.py

package info (click to toggle)
python-vispy 0.14.3-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 8,840 kB
  • sloc: python: 59,436; javascript: 6,800; makefile: 69; sh: 6
file content (390 lines) | stat: -rw-r--r-- 13,955 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# -*- coding: utf-8 -*-
from unittest import mock

from vispy.scene import Image, PanZoomCamera
from vispy.testing import (requires_application, TestingCanvas,
                           run_tests_if_main, IS_CI)
from vispy.testing.image_tester import assert_image_approved, downsample

import numpy as np
import pytest

from vispy.testing.rendered_array_tester import compare_render, max_for_dtype


@requires_application()
@pytest.mark.parametrize('is_3d', [True, False])
def test_image(is_3d):
    """Test image visual"""
    size = (100, 50)
    with TestingCanvas(size=size, bgcolor='w') as c:
        image = Image(cmap='grays', clim=[0, 1], parent=c.scene)
        shape = (size[1]-10, size[0]-10) + ((3,) if is_3d else ())
        np.random.seed(379823)
        data = np.random.rand(*shape)
        image.set_data(data)
        assert_image_approved(c.render(), "visuals/image%s.png" %
                              ("_rgb" if is_3d else "_mono"))

        # change to auto clims after first draw
        image.clim = "auto"
        assert_image_approved(c.render(), "visuals/image%s.png" %
                              ("_rgb" if is_3d else "_mono"))


@requires_application()
@pytest.mark.parametrize('gamma', [None, -0.5, "0.5"])
def test_bad_init_gamma(gamma):
    """Test creating an Image with a bad gamma value."""
    with TestingCanvas(size=(100, 50)) as c:
        pytest.raises((TypeError, ValueError), Image, gamma=gamma, parent=c.scene)


def _make_test_data(shape, input_dtype):
    data = np.random.random_sample(shape)
    if data.ndim == 3 and data.shape[-1] == 4:
        # RGBA - make alpha fully opaque
        data[..., -1] = 1.0
    max_val = max_for_dtype(input_dtype)
    if max_val != 1:
        data *= max_val
    data = data.astype(input_dtype)
    return data


def _set_image_data(image, data, should_fail):
    if should_fail:
        pytest.raises(ValueError, image.set_data, data)
        return
    image.set_data(data)


def _get_orig_and_new_clims(input_dtype):
    new_clim = (0.3, 0.8)
    max_val = max_for_dtype(input_dtype)
    if np.issubdtype(input_dtype, np.integer):
        new_clim = (int(new_clim[0] * max_val), int(new_clim[1] * max_val))
    return (0, max_val), new_clim


@requires_application()
@pytest.mark.parametrize('data_on_init', [False, True])
@pytest.mark.parametrize('clim_on_init', [False, True])
@pytest.mark.parametrize('num_channels', [0, 1, 3, 4])
@pytest.mark.parametrize('texture_format', [None, '__dtype__', 'auto'])
@pytest.mark.parametrize('input_dtype', [np.uint8, np.uint16, np.float32, np.float64])
def test_image_clims_and_gamma(input_dtype, texture_format, num_channels,
                               clim_on_init, data_on_init):
    """Test image visual with clims and gamma on shader."""
    size = (80, 80)
    if texture_format == '__dtype__':
        texture_format = input_dtype
    shape = size + (num_channels,) if num_channels > 0 else size
    np.random.seed(0)
    data = _make_test_data(shape, input_dtype)
    orig_clim, new_clim = _get_orig_and_new_clims(input_dtype)
    # 16-bit integers and above seem to have precision loss when scaled on the CPU
    is_16int_cpu_scaled = (np.dtype(input_dtype).itemsize >= 2 and
                           np.issubdtype(input_dtype, np.integer) and
                           texture_format is None)
    clim_atol = 2 if is_16int_cpu_scaled else 1
    gamma_atol = 3 if is_16int_cpu_scaled else 2

    kwargs = {}
    if clim_on_init:
        kwargs['clim'] = orig_clim
    if data_on_init:
        kwargs['data'] = data
    # default is RGBA, anything except auto requires reformat
    set_data_fails = (num_channels != 4 and
                      texture_format is not None and
                      texture_format != 'auto')

    with TestingCanvas(size=size[::-1], bgcolor="w") as c:
        image = Image(cmap='grays', texture_format=texture_format,
                      parent=c.scene, **kwargs)
        if not data_on_init:
            _set_image_data(image, data, set_data_fails)
            if set_data_fails:
                return
        rendered = c.render()
        _dtype = rendered.dtype
        shape_ratio = rendered.shape[0] // data.shape[0]
        rendered1 = downsample(rendered, shape_ratio, axis=(0, 1)).astype(_dtype)
        compare_render(data, rendered1)

        # adjust color limits
        image.clim = new_clim
        rendered2 = downsample(c.render(), shape_ratio, axis=(0, 1)).astype(_dtype)
        scaled_data = (np.clip(data, new_clim[0], new_clim[1]) - new_clim[0]) / (new_clim[1] - new_clim[0])
        compare_render(scaled_data, rendered2, rendered1, atol=clim_atol)

        # adjust gamma
        image.gamma = 2
        rendered3 = downsample(c.render(), shape_ratio, axis=(0, 1)).astype(_dtype)
        compare_render(scaled_data ** 2, rendered3, rendered2, atol=gamma_atol)


@pytest.mark.xfail(IS_CI, reason="CI environments sometimes treat NaN as 0")
@requires_application()
@pytest.mark.parametrize('texture_format', [None, 'auto'])
def test_image_nan_single_band(texture_format):
    size = (40, 40)
    data = np.ones((40, 40))
    data[:5, :5] = np.nan
    data[:5, -5:] = 0

    expected = (np.ones((40, 40, 4)) * 255).astype(np.uint8)
    # black square
    expected[:5, -5:, :3] = 0
    if texture_format is None:
        # CPU scaling's NaNs get converted to 0s
        expected[:5, :5, :3] = 0
    else:
        # GPU receives NaNs
        # nan - transparent square
        expected[:5, :5, 0] = 0
        expected[:5, :5, 1] = 255  # match the 'green' background
        expected[:5, :5, 2] = 0

    with TestingCanvas(size=size[::-1], bgcolor=(0, 1, 0)) as c:
        Image(data, cmap='grays',
              texture_format=texture_format, parent=c.scene)
        rendered = c.render()
        np.testing.assert_allclose(rendered, expected)


@requires_application()
@pytest.mark.parametrize('num_bands', [3, 4])
@pytest.mark.parametrize('texture_format', [None, 'auto'])
def test_image_nan_rgb(texture_format, num_bands):
    size = (40, 40)
    data = np.ones((40, 40, num_bands))
    data[:5, :5, :3] = np.nan  # upper left - RGB all NaN
    data[:5, 20:25, 0] = np.nan  # upper middle - R NaN
    data[:5, -5:, :3] = 0  # upper right - opaque RGB black square
    data[-5:, -5:, :] = np.nan  # lower right RGBA all NaN
    if num_bands == 4:
        data[-5:, :5, 3] = np.nan  # lower left - Alpha NaN

    expected = (np.ones((40, 40, 4)) * 255).astype(np.uint8)
    # upper left - NaN goes to opaque black
    expected[:5, :5, :3] = 0
    # upper middle -> NaN R goes to 0
    expected[:5, 20:25, 0] = 0
    # upper right - opaque RGB black square
    expected[:5, -5:, :3] = 0
    # lower right - NaN RGB/A goes to 0
    # RGBA case - we see the green background behind the image
    expected[-5:, -5:, 0] = 0
    expected[-5:, -5:, 2] = 0
    if num_bands == 3:
        # RGB case - opaque black because Alpha defaults 1
        expected[-5:, -5:, 1] = 0
    # lower left - NaN Alpha goes to 0
    if num_bands == 4:
        # see the green background behind the image
        expected[-5:, :5, 0] = 0
        expected[-5:, :5, 2] = 0

    with TestingCanvas(size=size[::-1], bgcolor=(0, 1, 0)) as c:
        Image(data, cmap='grays',
              texture_format=texture_format, parent=c.scene)
        rendered = c.render()
        np.testing.assert_allclose(rendered, expected)


@requires_application()
@pytest.mark.parametrize('num_channels', [0, 1, 3, 4])
@pytest.mark.parametrize('texture_format', [None, 'auto'])
def test_image_equal_clims(texture_format, num_channels):
    """Test image visual with equal clims."""
    size = (40, 40)
    input_dtype = np.uint8
    shape = size + (num_channels,) if num_channels > 0 else size
    np.random.seed(0)
    data = _make_test_data(shape, input_dtype)
    with TestingCanvas(size=size[::-1], bgcolor="w") as c:
        Image(data, cmap='viridis',
              texture_format=texture_format,
              clim=(128.0, 128.0),
              parent=c.scene)
        rendered = c.render()[..., :3]

        if num_channels >= 3:
            # RGBs don't have colormaps
            assert rendered.sum() == 0
            return

        # not all black
        assert rendered.sum() != 0
        # not all white
        assert rendered.sum() != 255 * rendered.size
        # should be all the same value
        r_unique = np.unique(rendered[..., 0])
        g_unique = np.unique(rendered[..., 1])
        b_unique = np.unique(rendered[..., 2])
        assert r_unique.size == 1
        assert g_unique.size == 1
        assert b_unique.size == 1


@requires_application()
def test_image_vertex_updates():
    """Test image visual coordinates are only built when needed."""
    size = (40, 40)
    with TestingCanvas(size=size, bgcolor="w") as c:
        shape = size + (3,)
        np.random.seed(0)
        image = Image(cmap='grays', clim=[0, 1], parent=c.scene)
        with mock.patch.object(
                image, '_build_vertex_data',
                wraps=image._build_vertex_data) as build_vertex_mock:
            data = np.random.rand(*shape)
            image.set_data(data)
            c.render()
            build_vertex_mock.assert_called_once()
            build_vertex_mock.reset_mock()  # reset the count to 0

            # rendering again shouldn't cause vertex coordinates to be built
            c.render()
            build_vertex_mock.assert_not_called()

            # changing to data of the same shape shouldn't cause it
            data = np.zeros_like(data)
            image.set_data(data)
            c.render()
            build_vertex_mock.assert_not_called()

            # changing to another shape should
            data = data[:-5, :-5]
            image.set_data(data)
            c.render()
            build_vertex_mock.assert_called_once()


@requires_application()
@pytest.mark.parametrize(
    ("dtype", "init_clim"),
    [
        (np.float32, "auto"),
        (np.float32, (0, 5)),
        (np.uint8, "auto"),
        (np.uint8, (0, 5)),
    ]
)
def test_change_clim_float(dtype, init_clim):
    """Test that with an image of floats, clim is correctly set from the first try.

    See https://github.com/vispy/vispy/pull/2245.
    """
    size = (40, 40)
    np.random.seed(0)
    data = (np.random.rand(*size) * 100).astype(dtype)

    with TestingCanvas(size=size[::-1], bgcolor="w") as c:
        image = Image(data=data, clim=init_clim, parent=c.scene)

        # needed to properly initialize the canvas
        c.render()

        image.clim = 0, 10
        rendered1 = c.render()
        # set clim to same values
        image.clim = 0, 10
        rendered2 = c.render()

        assert np.allclose(rendered1, rendered2)


@requires_application()
def test_image_interpolation():
    """Test different interpolations"""
    size = (81, 81)
    data = np.array([[0, 1]], dtype=int)
    left = (40, 0)
    right = (40, 80)
    center_left = (40, 39)
    center = (40, 40)
    center_right = (40, 41)
    white = (255, 255, 255, 255)
    black = (0, 0, 0, 255)
    gray = (128, 128, 128, 255)

    with TestingCanvas(size=size[::-1], bgcolor="w") as c:
        view = c.central_widget.add_view(border_width=0)
        view.camera = PanZoomCamera((0, 0, 2, 1))
        image = Image(data=data, cmap='grays',
                      parent=view.scene)

        # needed to properly initialize the canvas
        render = c.render()

        image.interpolation = 'nearest'
        render = c.render()
        assert np.allclose(render[left], black)
        assert np.allclose(render[right], white)
        assert np.allclose(render[center_left], black)
        assert np.allclose(render[center_right], white)

        image.interpolation = 'bilinear'
        render = c.render()
        assert np.allclose(render[left], black)
        assert np.allclose(render[right], white)
        assert np.allclose(render[center], gray, atol=5)  # we just want gray, this is not quantitative

        image.interpolation = 'custom'
        image.custom_kernel = np.array([[0]])  # no sampling
        render = c.render()
        assert np.allclose(render[left], black)
        assert np.allclose(render[right], black)
        assert np.allclose(render[center], black)

        image.custom_kernel = np.array([[1]])  # same as linear
        render = c.render()
        assert np.allclose(render[left], black)
        assert np.allclose(render[right], white)
        assert np.allclose(render[center], gray, atol=5)  # we just want gray, this is not quantitative


@requires_application()
def test_image_set_data_different_dtype():
    size = (80, 80)
    data = np.array([[0, 127]], dtype=np.int8)
    left = (40, 10)
    right = (40, 70)
    white = (255, 255, 255, 255)
    black = (0, 0, 0, 255)

    with TestingCanvas(size=size[::-1], bgcolor="w") as c:
        view = c.central_widget.add_view()
        view.camera = PanZoomCamera((0, 0, 2, 1))
        image = Image(data=data, cmap='grays', clim=[0, 127],
                      parent=view.scene)

        render = c.render()
        assert np.allclose(render[left], black)
        assert np.allclose(render[right], white)

        # same data as float should change nothing
        image.set_data(data.astype(np.float32))
        render = c.render()
        assert np.allclose(render[left], black)
        assert np.allclose(render[right], white)

        # something inverted, different dtype
        new_data = np.array([[127, 0]], dtype=np.float16)
        image.set_data(new_data)
        render = c.render()
        assert np.allclose(render[left], white)
        assert np.allclose(render[right], black)

        # out of bounds should clip (2000 > 127)
        new_data = np.array([[0, 2000]], dtype=np.float64)
        image.set_data(new_data)
        render = c.render()
        assert np.allclose(render[left], black)
        assert np.allclose(render[right], white)


run_tests_if_main()