1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
# -*- coding: utf-8 -*-
# vispy: testskip
"""
Colour Rendering of Spectra
by John Walker
http://www.fourmilab.ch/
Last updated: March 9, 2003
Converted to Python by Andrew Hutchins, sometime in early
2011.
This program is in the public domain.
The modifications are also public domain. (AH)
For complete information about the techniques employed in
this program, see the World-Wide Web document:
http://www.fourmilab.ch/documents/specrend/
The xyz_to_rgb() function, which was wrong in the original
version of this program, was corrected by:
Andrew J. S. Hamilton 21 May 1999
Andrew.Hamilton@Colorado.EDU
http://casa.colorado.edu/~ajsh/
who also added the gamma correction facilities and
modified constrain_rgb() to work by desaturating the
colour by adding white.
A program which uses these functions to plot CIE
"tongue" diagrams called "ppmcie" is included in
the Netpbm graphics toolkit:
http://netpbm.sourceforge.net/
(The program was called cietoppm in earlier
versions of Netpbm.)
"""
import math
# A colour system is defined by the CIE x and y coordinates of
# its three primary illuminants and the x and y coordinates of
# the white point.
GAMMA_REC709 = 0
NTSCsystem = {"name": "NTSC",
"xRed": 0.67, "yRed": 0.33,
"xGreen": 0.21, "yGreen": 0.71,
"xBlue": 0.14, "yBlue": 0.08,
"xWhite": 0.3101, "yWhite": 0.3163, "gamma": GAMMA_REC709}
EBUsystem = {"name": "SUBU (PAL/SECAM)",
"xRed": 0.64, "yRed": 0.33,
"xGreen": 0.29, "yGreen": 0.60,
"xBlue": 0.15, "yBlue": 0.06,
"xWhite": 0.3127, "yWhite": 0.3291, "gamma": GAMMA_REC709}
SMPTEsystem = {"name": "SMPTE",
"xRed": 0.63, "yRed": 0.34,
"xGreen": 0.31, "yGreen": 0.595,
"xBlue": 0.155, "yBlue": 0.07,
"xWhite": 0.3127, "yWhite": 0.3291, "gamma": GAMMA_REC709}
HDTVsystem = {"name": "HDTV",
"xRed": 0.67, "yRed": 0.33,
"xGreen": 0.21, "yGreen": 0.71,
"xBlue": 0.15, "yBlue": 0.06,
"xWhite": 0.3127, "yWhite": 0.3291, "gamma": GAMMA_REC709}
CIEsystem = {"name": "CIE",
"xRed": 0.7355, "yRed": 0.2645,
"xGreen": 0.2658, "yGreen": 0.7243,
"xBlue": 0.1669, "yBlue": 0.0085,
"xWhite": 0.3333333333, "yWhite": 0.3333333333,
"gamma": GAMMA_REC709}
Rec709system = {"name": "CIE REC709",
"xRed": 0.64, "yRed": 0.33,
"xGreen": 0.30, "yGreen": 0.60,
"xBlue": 0.15, "yBlue": 0.06,
"xWhite": 0.3127, "yWhite": 0.3291,
"gamma": GAMMA_REC709}
def upvp_to_xy(up, vp):
xc = (9 * up) / ((6 * up) - (16 * vp) + 12)
yc = (4 * vp) / ((6 * up) - (16 * vp) + 12)
return(xc, yc)
def xy_toupvp(xc, yc):
up = (4 * xc) / ((-2 * xc) + (12 * yc) + 3)
vp = (9 * yc) / ((-2 * xc) + (12 * yc) + 3)
return(up, vp)
def xyz_to_rgb(cs, xc, yc, zc):
"""
Given an additive tricolour system CS, defined by the CIE x
and y chromaticities of its three primaries (z is derived
trivially as 1-(x+y)), and a desired chromaticity (XC, YC,
ZC) in CIE space, determine the contribution of each
primary in a linear combination which sums to the desired
chromaticity. If the requested chromaticity falls outside
the Maxwell triangle (colour gamut) formed by the three
primaries, one of the r, g, or b weights will be negative.
Caller can use constrain_rgb() to desaturate an
outside-gamut colour to the closest representation within
the available gamut and/or norm_rgb to normalise the RGB
components so the largest nonzero component has value 1.
"""
xr = cs["xRed"]
yr = cs["yRed"]
zr = 1 - (xr + yr)
xg = cs["xGreen"]
yg = cs["yGreen"]
zg = 1 - (xg + yg)
xb = cs["xBlue"]
yb = cs["yBlue"]
zb = 1 - (xb + yb)
xw = cs["xWhite"]
yw = cs["yWhite"]
zw = 1 - (xw + yw)
rx = (yg * zb) - (yb * zg)
ry = (xb * zg) - (xg * zb)
rz = (xg * yb) - (xb * yg)
gx = (yb * zr) - (yr * zb)
gy = (xr * zb) - (xb * zr)
gz = (xb * yr) - (xr * yb)
bx = (yr * zg) - (yg * zr)
by = (xg * zr) - (xr * zg)
bz = (xr * yg) - (xg * yr)
rw = ((rx * xw) + (ry * yw) + (rz * zw)) / yw
gw = ((gx * xw) + (gy * yw) + (gz * zw)) / yw
bw = ((bx * xw) + (by * yw) + (bz * zw)) / yw
rx = rx / rw
ry = ry / rw
rz = rz / rw
gx = gx / gw
gy = gy / gw
gz = gz / gw
bx = bx / bw
by = by / bw
bz = bz / bw
r = (rx * xc) + (ry * yc) + (rz * zc)
g = (gx * xc) + (gy * yc) + (gz * zc)
b = (bx * xc) + (by * yc) + (bz * zc)
return(r, g, b)
def inside_gamut(r, g, b):
"""
Test whether a requested colour is within the gamut
achievable with the primaries of the current colour
system. This amounts simply to testing whether all the
primary weights are non-negative. */
"""
return (r >= 0) and (g >= 0) and (b >= 0)
def constrain_rgb(r, g, b):
"""
If the requested RGB shade contains a negative weight for
one of the primaries, it lies outside the colour gamut
accessible from the given triple of primaries. Desaturate
it by adding white, equal quantities of R, G, and B, enough
to make RGB all positive. The function returns 1 if the
components were modified, zero otherwise.
"""
# Amount of white needed is w = - min(0, *r, *g, *b)
w = -min([0, r, g, b]) # I think?
# Add just enough white to make r, g, b all positive.
if w > 0:
r += w
g += w
b += w
return(r, g, b)
def gamma_correct(cs, c):
"""
Transform linear RGB values to nonlinear RGB values. Rec.
709 is ITU-R Recommendation BT. 709 (1990) ``Basic
Parameter Values for the HDTV Standard for the Studio and
for International Programme Exchange'', formerly CCIR Rec.
709. For details see
http://www.poynton.com/ColorFAQ.html
http://www.poynton.com/GammaFAQ.html
"""
gamma = cs.gamma
if gamma == GAMMA_REC709:
cc = 0.018
if c < cc:
c = ((1.099 * math.pow(cc, 0.45)) - 0.099) / cc
else:
c = (1.099 * math.pow(c, 0.45)) - 0.099
else:
c = math.pow(c, 1.0 / gamma)
return(c)
def gamma_correct_rgb(cs, r, g, b):
r = gamma_correct(cs, r)
g = gamma_correct(cs, g)
b = gamma_correct(cs, b)
return (r, g, b)
def norm_rgb(r, g, b):
"""
Normalise RGB components so the most intense (unless all
are zero) has a value of 1.
"""
greatest = max([r, g, b])
if greatest > 0:
r /= greatest
g /= greatest
b /= greatest
return(r, g, b)
# spec_intens is a function
def spectrum_to_xyz(spec_intens, temp):
"""
Calculate the CIE X, Y, and Z coordinates corresponding to
a light source with spectral distribution given by the
function SPEC_INTENS, which is called with a series of
wavelengths between 380 and 780 nm (the argument is
expressed in meters), which returns emittance at that
wavelength in arbitrary units. The chromaticity
coordinates of the spectrum are returned in the x, y, and z
arguments which respect the identity:
x + y + z = 1.
CIE colour matching functions xBar, yBar, and zBar for
wavelengths from 380 through 780 nanometers, every 5
nanometers. For a wavelength lambda in this range::
cie_colour_match[(lambda - 380) / 5][0] = xBar
cie_colour_match[(lambda - 380) / 5][1] = yBar
cie_colour_match[(lambda - 380) / 5][2] = zBar
AH Note 2011: This next bit is kind of irrelevant on modern
hardware. Unless you are desperate for speed.
In which case don't use the Python version!
To save memory, this table can be declared as floats
rather than doubles; (IEEE) float has enough
significant bits to represent the values. It's declared
as a double here to avoid warnings about "conversion
between floating-point types" from certain persnickety
compilers.
"""
cie_colour_match = [
[0.0014, 0.0000, 0.0065],
[0.0022, 0.0001, 0.0105],
[0.0042, 0.0001, 0.0201],
[0.0076, 0.0002, 0.0362],
[0.0143, 0.0004, 0.0679],
[0.0232, 0.0006, 0.1102],
[0.0435, 0.0012, 0.2074],
[0.0776, 0.0022, 0.3713],
[0.1344, 0.0040, 0.6456],
[0.2148, 0.0073, 1.0391],
[0.2839, 0.0116, 1.3856],
[0.3285, 0.0168, 1.6230],
[0.3483, 0.0230, 1.7471],
[0.3481, 0.0298, 1.7826],
[0.3362, 0.0380, 1.7721],
[0.3187, 0.0480, 1.7441],
[0.2908, 0.0600, 1.6692],
[0.2511, 0.0739, 1.5281],
[0.1954, 0.0910, 1.2876],
[0.1421, 0.1126, 1.0419],
[0.0956, 0.1390, 0.8130],
[0.0580, 0.1693, 0.6162],
[0.0320, 0.2080, 0.4652],
[0.0147, 0.2586, 0.3533],
[0.0049, 0.3230, 0.2720],
[0.0024, 0.4073, 0.2123],
[0.0093, 0.5030, 0.1582],
[0.0291, 0.6082, 0.1117],
[0.0633, 0.7100, 0.0782],
[0.1096, 0.7932, 0.0573],
[0.1655, 0.8620, 0.0422],
[0.2257, 0.9149, 0.0298],
[0.2904, 0.9540, 0.0203],
[0.3597, 0.9803, 0.0134],
[0.4334, 0.9950, 0.0087],
[0.5121, 1.0000, 0.0057],
[0.5945, 0.9950, 0.0039],
[0.6784, 0.9786, 0.0027],
[0.7621, 0.9520, 0.0021],
[0.8425, 0.9154, 0.0018],
[0.9163, 0.8700, 0.0017],
[0.9786, 0.8163, 0.0014],
[1.0263, 0.7570, 0.0011],
[1.0567, 0.6949, 0.0010],
[1.0622, 0.6310, 0.0008],
[1.0456, 0.5668, 0.0006],
[1.0026, 0.5030, 0.0003],
[0.9384, 0.4412, 0.0002],
[0.8544, 0.3810, 0.0002],
[0.7514, 0.3210, 0.0001],
[0.6424, 0.2650, 0.0000],
[0.5419, 0.2170, 0.0000],
[0.4479, 0.1750, 0.0000],
[0.3608, 0.1382, 0.0000],
[0.2835, 0.1070, 0.0000],
[0.2187, 0.0816, 0.0000],
[0.1649, 0.0610, 0.0000],
[0.1212, 0.0446, 0.0000],
[0.0874, 0.0320, 0.0000],
[0.0636, 0.0232, 0.0000],
[0.0468, 0.0170, 0.0000],
[0.0329, 0.0119, 0.0000],
[0.0227, 0.0082, 0.0000],
[0.0158, 0.0057, 0.0000],
[0.0114, 0.0041, 0.0000],
[0.0081, 0.0029, 0.0000],
[0.0058, 0.0021, 0.0000],
[0.0041, 0.0015, 0.0000],
[0.0029, 0.0010, 0.0000],
[0.0020, 0.0007, 0.0000],
[0.0014, 0.0005, 0.0000],
[0.0010, 0.0004, 0.0000],
[0.0007, 0.0002, 0.0000],
[0.0005, 0.0002, 0.0000],
[0.0003, 0.0001, 0.0000],
[0.0002, 0.0001, 0.0000],
[0.0002, 0.0001, 0.0000],
[0.0001, 0.0000, 0.0000],
[0.0001, 0.0000, 0.0000],
[0.0001, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000]]
X = 0
Y = 0
Z = 0
# lambda = 380; lambda < 780.1; i++, lambda += 5) {
for i, lamb in enumerate(range(380, 780, 5)):
Me = spec_intens(lamb, temp)
X += Me * cie_colour_match[i][0]
Y += Me * cie_colour_match[i][1]
Z += Me * cie_colour_match[i][2]
XYZ = (X + Y + Z)
x = X / XYZ
y = Y / XYZ
z = Z / XYZ
return(x, y, z)
def bb_spectrum(wavelength, bbTemp=5000):
"""
Calculate, by Planck's radiation law, the emittance of a black body
of temperature bbTemp at the given wavelength (in metres). */
"""
wlm = wavelength * 1e-9 # Convert to metres
return (3.74183e-16 *
math.pow(wlm, -5.0)) / (math.exp(1.4388e-2 / (wlm * bbTemp)) - 1.0)
""" Built-in test program which displays the x, y, and Z and RGB
values for black body spectra from 1000 to 10000 degrees kelvin.
When run, this program should produce the following output:
Temperature x y z R G B
----------- ------ ------ ------ ----- ----- -----
1000 K 0.6528 0.3444 0.0028 1.000 0.007 0.000 (Approximation)
1500 K 0.5857 0.3931 0.0212 1.000 0.126 0.000 (Approximation)
2000 K 0.5267 0.4133 0.0600 1.000 0.234 0.010
2500 K 0.4770 0.4137 0.1093 1.000 0.349 0.067
3000 K 0.4369 0.4041 0.1590 1.000 0.454 0.151
3500 K 0.4053 0.3907 0.2040 1.000 0.549 0.254
4000 K 0.3805 0.3768 0.2428 1.000 0.635 0.370
4500 K 0.3608 0.3636 0.2756 1.000 0.710 0.493
5000 K 0.3451 0.3516 0.3032 1.000 0.778 0.620
5500 K 0.3325 0.3411 0.3265 1.000 0.837 0.746
6000 K 0.3221 0.3318 0.3461 1.000 0.890 0.869
6500 K 0.3135 0.3237 0.3628 1.000 0.937 0.988
7000 K 0.3064 0.3166 0.3770 0.907 0.888 1.000
7500 K 0.3004 0.3103 0.3893 0.827 0.839 1.000
8000 K 0.2952 0.3048 0.4000 0.762 0.800 1.000
8500 K 0.2908 0.3000 0.4093 0.711 0.766 1.000
9000 K 0.2869 0.2956 0.4174 0.668 0.738 1.000
9500 K 0.2836 0.2918 0.4246 0.632 0.714 1.000
10000 K 0.2807 0.2884 0.4310 0.602 0.693 1.000
"""
if __name__ == "__main__":
print("Temperature x y z R G B\n")
print("----------- ------ ------ ------ ----- ----- -----\n")
for t in range(1000, 10000, 500): # (t = 1000; t <= 10000; t+= 500) {
x, y, z = spectrum_to_xyz(bb_spectrum, t)
r, g, b = xyz_to_rgb(SMPTEsystem, x, y, z)
print(" %5.0f K %.4f %.4f %.4f " % (t, x, y, z))
# I omit the approximation bit here.
r, g, b = constrain_rgb(r, g, b)
r, g, b = norm_rgb(r, g, b)
print("%.3f %.3f %.3f" % (r, g, b))
|