File: galaxy_specrend.py

package info (click to toggle)
python-vispy 0.15.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,868 kB
  • sloc: python: 59,799; javascript: 6,800; makefile: 69; sh: 6
file content (422 lines) | stat: -rw-r--r-- 13,768 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# -*- coding: utf-8 -*-
# vispy: testskip

"""
Colour Rendering of Spectra

by John Walker
http://www.fourmilab.ch/

Last updated: March 9, 2003

Converted to Python by Andrew Hutchins, sometime in early
2011.

    This program is in the public domain.
    The modifications are also public domain. (AH)

For complete information about the techniques employed in
this program, see the World-Wide Web document:

    http://www.fourmilab.ch/documents/specrend/

The xyz_to_rgb() function, which was wrong in the original
version of this program, was corrected by:

    Andrew J. S. Hamilton 21 May 1999
    Andrew.Hamilton@Colorado.EDU
    http://casa.colorado.edu/~ajsh/

who also added the gamma correction facilities and
modified constrain_rgb() to work by desaturating the
colour by adding white.

A program which uses these functions to plot CIE
"tongue" diagrams called "ppmcie" is included in
the Netpbm graphics toolkit:

    http://netpbm.sourceforge.net/

(The program was called cietoppm in earlier
versions of Netpbm.)

"""
import math

# A colour system is defined by the CIE x and y coordinates of
# its three primary illuminants and the x and y coordinates of
# the white point.

GAMMA_REC709 = 0

NTSCsystem = {"name": "NTSC",
              "xRed": 0.67, "yRed": 0.33,
              "xGreen": 0.21, "yGreen": 0.71,
              "xBlue": 0.14, "yBlue": 0.08,
              "xWhite": 0.3101, "yWhite": 0.3163, "gamma": GAMMA_REC709}

EBUsystem = {"name": "SUBU (PAL/SECAM)",
             "xRed": 0.64, "yRed": 0.33,
             "xGreen": 0.29, "yGreen": 0.60,
             "xBlue": 0.15, "yBlue": 0.06,
             "xWhite": 0.3127, "yWhite": 0.3291, "gamma": GAMMA_REC709}
SMPTEsystem = {"name": "SMPTE",
               "xRed": 0.63, "yRed": 0.34,
               "xGreen": 0.31, "yGreen": 0.595,
               "xBlue": 0.155, "yBlue": 0.07,
               "xWhite": 0.3127, "yWhite": 0.3291, "gamma": GAMMA_REC709}

HDTVsystem = {"name": "HDTV",
              "xRed": 0.67, "yRed": 0.33,
              "xGreen": 0.21, "yGreen": 0.71,
              "xBlue": 0.15, "yBlue": 0.06,
              "xWhite": 0.3127, "yWhite": 0.3291, "gamma": GAMMA_REC709}

CIEsystem = {"name": "CIE",
             "xRed": 0.7355, "yRed": 0.2645,
             "xGreen": 0.2658, "yGreen": 0.7243,
             "xBlue": 0.1669, "yBlue": 0.0085,
             "xWhite": 0.3333333333, "yWhite": 0.3333333333,
             "gamma": GAMMA_REC709}

Rec709system = {"name": "CIE REC709",
                "xRed": 0.64, "yRed": 0.33,
                "xGreen": 0.30, "yGreen": 0.60,
                "xBlue": 0.15, "yBlue": 0.06,
                "xWhite": 0.3127, "yWhite": 0.3291,
                "gamma": GAMMA_REC709}


def upvp_to_xy(up, vp):
    xc = (9 * up) / ((6 * up) - (16 * vp) + 12)
    yc = (4 * vp) / ((6 * up) - (16 * vp) + 12)
    return(xc, yc)


def xy_toupvp(xc, yc):
    up = (4 * xc) / ((-2 * xc) + (12 * yc) + 3)
    vp = (9 * yc) / ((-2 * xc) + (12 * yc) + 3)
    return(up, vp)


def xyz_to_rgb(cs, xc, yc, zc):
    """
    Given an additive tricolour system CS, defined by the CIE x
    and y chromaticities of its three primaries (z is derived
    trivially as 1-(x+y)), and a desired chromaticity (XC, YC,
    ZC) in CIE space, determine the contribution of each
    primary in a linear combination which sums to the desired
    chromaticity.  If the  requested chromaticity falls outside
    the Maxwell  triangle (colour gamut) formed by the three
    primaries, one of the r, g, or b weights will be negative.

    Caller can use constrain_rgb() to desaturate an
    outside-gamut colour to the closest representation within
    the available gamut and/or norm_rgb to normalise the RGB
    components so the largest nonzero component has value 1.
    """

    xr = cs["xRed"]
    yr = cs["yRed"]
    zr = 1 - (xr + yr)
    xg = cs["xGreen"]
    yg = cs["yGreen"]
    zg = 1 - (xg + yg)
    xb = cs["xBlue"]
    yb = cs["yBlue"]
    zb = 1 - (xb + yb)
    xw = cs["xWhite"]
    yw = cs["yWhite"]
    zw = 1 - (xw + yw)

    rx = (yg * zb) - (yb * zg)
    ry = (xb * zg) - (xg * zb)
    rz = (xg * yb) - (xb * yg)
    gx = (yb * zr) - (yr * zb)
    gy = (xr * zb) - (xb * zr)
    gz = (xb * yr) - (xr * yb)
    bx = (yr * zg) - (yg * zr)
    by = (xg * zr) - (xr * zg)
    bz = (xr * yg) - (xg * yr)

    rw = ((rx * xw) + (ry * yw) + (rz * zw)) / yw
    gw = ((gx * xw) + (gy * yw) + (gz * zw)) / yw
    bw = ((bx * xw) + (by * yw) + (bz * zw)) / yw

    rx = rx / rw
    ry = ry / rw
    rz = rz / rw
    gx = gx / gw
    gy = gy / gw
    gz = gz / gw
    bx = bx / bw
    by = by / bw
    bz = bz / bw

    r = (rx * xc) + (ry * yc) + (rz * zc)
    g = (gx * xc) + (gy * yc) + (gz * zc)
    b = (bx * xc) + (by * yc) + (bz * zc)

    return(r, g, b)


def inside_gamut(r, g, b):
    """
     Test whether a requested colour is within the gamut
     achievable with the primaries of the current colour
     system.  This amounts simply to testing whether all the
     primary weights are non-negative. */
    """
    return (r >= 0) and (g >= 0) and (b >= 0)


def constrain_rgb(r, g, b):
    """
    If the requested RGB shade contains a negative weight for
    one of the primaries, it lies outside the colour gamut
    accessible from the given triple of primaries.  Desaturate
    it by adding white, equal quantities of R, G, and B, enough
    to make RGB all positive.  The function returns 1 if the
    components were modified, zero otherwise.
    """
    # Amount of white needed is w = - min(0, *r, *g, *b)
    w = -min([0, r, g, b])  # I think?

    # Add just enough white to make r, g, b all positive.
    if w > 0:
        r += w
        g += w
        b += w
    return(r, g, b)


def gamma_correct(cs, c):
    """
    Transform linear RGB values to nonlinear RGB values. Rec.
    709 is ITU-R Recommendation BT. 709 (1990) ``Basic
    Parameter Values for the HDTV Standard for the Studio and
    for International Programme Exchange'', formerly CCIR Rec.
    709. For details see

       http://www.poynton.com/ColorFAQ.html
       http://www.poynton.com/GammaFAQ.html
    """
    gamma = cs.gamma

    if gamma == GAMMA_REC709:
        cc = 0.018
        if c < cc:
            c = ((1.099 * math.pow(cc, 0.45)) - 0.099) / cc
        else:
            c = (1.099 * math.pow(c, 0.45)) - 0.099
    else:
        c = math.pow(c, 1.0 / gamma)
    return(c)


def gamma_correct_rgb(cs, r, g, b):
    r = gamma_correct(cs, r)
    g = gamma_correct(cs, g)
    b = gamma_correct(cs, b)
    return (r, g, b)


def norm_rgb(r, g, b):
    """
    Normalise RGB components so the most intense (unless all
    are zero) has a value of 1.
    """
    greatest = max([r, g, b])

    if greatest > 0:
        r /= greatest
        g /= greatest
        b /= greatest
    return(r, g, b)


# spec_intens is a function
def spectrum_to_xyz(spec_intens, temp):
    """
    Calculate the CIE X, Y, and Z coordinates corresponding to
    a light source with spectral distribution given by  the
    function SPEC_INTENS, which is called with a series of
    wavelengths between 380 and 780 nm (the argument is
    expressed in meters), which returns emittance at  that
    wavelength in arbitrary units.  The chromaticity
    coordinates of the spectrum are returned in the x, y, and z
    arguments which respect the identity:

        x + y + z = 1.

    CIE colour matching functions xBar, yBar, and zBar for
    wavelengths from 380 through 780 nanometers, every 5
    nanometers.  For a wavelength lambda in this range::

        cie_colour_match[(lambda - 380) / 5][0] = xBar
        cie_colour_match[(lambda - 380) / 5][1] = yBar
        cie_colour_match[(lambda - 380) / 5][2] = zBar

    AH Note 2011: This next bit is kind of irrelevant on modern
    hardware. Unless you are desperate for speed.
    In which case don't use the Python version!

    To save memory, this table can be declared as floats
    rather than doubles; (IEEE) float has enough
    significant bits to represent the values. It's declared
    as a double here to avoid warnings about "conversion
    between floating-point types" from certain persnickety
    compilers.
    """

    cie_colour_match = [
        [0.0014, 0.0000, 0.0065],
        [0.0022, 0.0001, 0.0105],
        [0.0042, 0.0001, 0.0201],
        [0.0076, 0.0002, 0.0362],
        [0.0143, 0.0004, 0.0679],
        [0.0232, 0.0006, 0.1102],
        [0.0435, 0.0012, 0.2074],
        [0.0776, 0.0022, 0.3713],
        [0.1344, 0.0040, 0.6456],
        [0.2148, 0.0073, 1.0391],
        [0.2839, 0.0116, 1.3856],
        [0.3285, 0.0168, 1.6230],
        [0.3483, 0.0230, 1.7471],
        [0.3481, 0.0298, 1.7826],
        [0.3362, 0.0380, 1.7721],
        [0.3187, 0.0480, 1.7441],
        [0.2908, 0.0600, 1.6692],
        [0.2511, 0.0739, 1.5281],
        [0.1954, 0.0910, 1.2876],
        [0.1421, 0.1126, 1.0419],
        [0.0956, 0.1390, 0.8130],
        [0.0580, 0.1693, 0.6162],
        [0.0320, 0.2080, 0.4652],
        [0.0147, 0.2586, 0.3533],
        [0.0049, 0.3230, 0.2720],
        [0.0024, 0.4073, 0.2123],
        [0.0093, 0.5030, 0.1582],
        [0.0291, 0.6082, 0.1117],
        [0.0633, 0.7100, 0.0782],
        [0.1096, 0.7932, 0.0573],
        [0.1655, 0.8620, 0.0422],
        [0.2257, 0.9149, 0.0298],
        [0.2904, 0.9540, 0.0203],
        [0.3597, 0.9803, 0.0134],
        [0.4334, 0.9950, 0.0087],
        [0.5121, 1.0000, 0.0057],
        [0.5945, 0.9950, 0.0039],
        [0.6784, 0.9786, 0.0027],
        [0.7621, 0.9520, 0.0021],
        [0.8425, 0.9154, 0.0018],
        [0.9163, 0.8700, 0.0017],
        [0.9786, 0.8163, 0.0014],
        [1.0263, 0.7570, 0.0011],
        [1.0567, 0.6949, 0.0010],
        [1.0622, 0.6310, 0.0008],
        [1.0456, 0.5668, 0.0006],
        [1.0026, 0.5030, 0.0003],
        [0.9384, 0.4412, 0.0002],
        [0.8544, 0.3810, 0.0002],
        [0.7514, 0.3210, 0.0001],
        [0.6424, 0.2650, 0.0000],
        [0.5419, 0.2170, 0.0000],
        [0.4479, 0.1750, 0.0000],
        [0.3608, 0.1382, 0.0000],
        [0.2835, 0.1070, 0.0000],
        [0.2187, 0.0816, 0.0000],
        [0.1649, 0.0610, 0.0000],
        [0.1212, 0.0446, 0.0000],
        [0.0874, 0.0320, 0.0000],
        [0.0636, 0.0232, 0.0000],
        [0.0468, 0.0170, 0.0000],
        [0.0329, 0.0119, 0.0000],
        [0.0227, 0.0082, 0.0000],
        [0.0158, 0.0057, 0.0000],
        [0.0114, 0.0041, 0.0000],
        [0.0081, 0.0029, 0.0000],
        [0.0058, 0.0021, 0.0000],
        [0.0041, 0.0015, 0.0000],
        [0.0029, 0.0010, 0.0000],
        [0.0020, 0.0007, 0.0000],
        [0.0014, 0.0005, 0.0000],
        [0.0010, 0.0004, 0.0000],
        [0.0007, 0.0002, 0.0000],
        [0.0005, 0.0002, 0.0000],
        [0.0003, 0.0001, 0.0000],
        [0.0002, 0.0001, 0.0000],
        [0.0002, 0.0001, 0.0000],
        [0.0001, 0.0000, 0.0000],
        [0.0001, 0.0000, 0.0000],
        [0.0001, 0.0000, 0.0000],
        [0.0000, 0.0000, 0.0000]]

    X = 0
    Y = 0
    Z = 0
    # lambda = 380; lambda < 780.1; i++, lambda += 5) {
    for i, lamb in enumerate(range(380, 780, 5)):
        Me = spec_intens(lamb, temp)
        X += Me * cie_colour_match[i][0]
        Y += Me * cie_colour_match[i][1]
        Z += Me * cie_colour_match[i][2]
    XYZ = (X + Y + Z)
    x = X / XYZ
    y = Y / XYZ
    z = Z / XYZ

    return(x, y, z)


def bb_spectrum(wavelength, bbTemp=5000):
    """
    Calculate, by Planck's radiation law, the emittance of a black body
    of temperature bbTemp at the given wavelength (in metres).  */
    """
    wlm = wavelength * 1e-9  # Convert to metres
    return (3.74183e-16 *
            math.pow(wlm, -5.0)) / (math.exp(1.4388e-2 / (wlm * bbTemp)) - 1.0)

    """  Built-in test program which displays the x, y, and Z and RGB
    values for black body spectra from 1000 to 10000 degrees kelvin.
    When run, this program should produce the following output:

    Temperature       x      y      z       R     G     B
    -----------    ------ ------ ------   ----- ----- -----
       1000 K      0.6528 0.3444 0.0028   1.000 0.007 0.000 (Approximation)
       1500 K      0.5857 0.3931 0.0212   1.000 0.126 0.000 (Approximation)
       2000 K      0.5267 0.4133 0.0600   1.000 0.234 0.010
       2500 K      0.4770 0.4137 0.1093   1.000 0.349 0.067
       3000 K      0.4369 0.4041 0.1590   1.000 0.454 0.151
       3500 K      0.4053 0.3907 0.2040   1.000 0.549 0.254
       4000 K      0.3805 0.3768 0.2428   1.000 0.635 0.370
       4500 K      0.3608 0.3636 0.2756   1.000 0.710 0.493
       5000 K      0.3451 0.3516 0.3032   1.000 0.778 0.620
       5500 K      0.3325 0.3411 0.3265   1.000 0.837 0.746
       6000 K      0.3221 0.3318 0.3461   1.000 0.890 0.869
       6500 K      0.3135 0.3237 0.3628   1.000 0.937 0.988
       7000 K      0.3064 0.3166 0.3770   0.907 0.888 1.000
       7500 K      0.3004 0.3103 0.3893   0.827 0.839 1.000
       8000 K      0.2952 0.3048 0.4000   0.762 0.800 1.000
       8500 K      0.2908 0.3000 0.4093   0.711 0.766 1.000
       9000 K      0.2869 0.2956 0.4174   0.668 0.738 1.000
       9500 K      0.2836 0.2918 0.4246   0.632 0.714 1.000
      10000 K      0.2807 0.2884 0.4310   0.602 0.693 1.000
"""

if __name__ == "__main__":
    print("Temperature       x      y      z       R     G     B\n")
    print("-----------    ------ ------ ------   ----- ----- -----\n")

    for t in range(1000, 10000, 500):  # (t = 1000; t <= 10000; t+= 500) {
        x, y, z = spectrum_to_xyz(bb_spectrum, t)

        r, g, b = xyz_to_rgb(SMPTEsystem, x, y, z)

        print("  %5.0f K      %.4f %.4f %.4f   " % (t, x, y, z))

        # I omit the approximation bit here.
        r, g, b = constrain_rgb(r, g, b)
        r, g, b = norm_rgb(r, g, b)
        print("%.3f %.3f %.3f" % (r, g, b))