1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
# Author: Nicolas P .Rougier
# Date: 04/03/2014
# -----------------------------------------------------------------------------
"""
Drawing a rotated 3D cube
=========================
"""
import math
import numpy as np
from vispy import app
from vispy.gloo import gl
def checkerboard(grid_num=8, grid_size=32):
row_even = grid_num // 2 * [0, 1]
row_odd = grid_num // 2 * [1, 0]
Z = np.row_stack(grid_num // 2 * (row_even, row_odd)).astype(np.uint8)
return 255 * Z.repeat(grid_size, axis=0).repeat(grid_size, axis=1)
def rotate(M, angle, x, y, z, point=None):
angle = math.pi * angle / 180
c, s = math.cos(angle), math.sin(angle)
n = math.sqrt(x * x + y * y + z * z)
x /= n
y /= n
z /= n
cx, cy, cz = (1 - c) * x, (1 - c) * y, (1 - c) * z
R = np.array([[cx * x + c, cy * x - z * s, cz * x + y * s, 0],
[cx * y + z * s, cy * y + c, cz * y - x * s, 0],
[cx * z - y * s, cy * z + x * s, cz * z + c, 0],
[0, 0, 0, 1]], dtype=M.dtype).T
M[...] = np.dot(M, R)
return M
def translate(M, x, y=None, z=None):
y = x if y is None else y
z = x if z is None else z
T = np.array([[1.0, 0.0, 0.0, x],
[0.0, 1.0, 0.0, y],
[0.0, 0.0, 1.0, z],
[0.0, 0.0, 0.0, 1.0]], dtype=M.dtype).T
M[...] = np.dot(M, T)
return M
def frustum(left, right, bottom, top, znear, zfar):
M = np.zeros((4, 4), dtype=np.float32)
M[0, 0] = +2.0 * znear / (right - left)
M[2, 0] = (right + left) / (right - left)
M[1, 1] = +2.0 * znear / (top - bottom)
M[3, 1] = (top + bottom) / (top - bottom)
M[2, 2] = -(zfar + znear) / (zfar - znear)
M[3, 2] = -2.0 * znear * zfar / (zfar - znear)
M[2, 3] = -1.0
return M
def perspective(fovy, aspect, znear, zfar):
h = math.tan(fovy / 360.0 * math.pi) * znear
w = h * aspect
return frustum(-w, w, -h, h, znear, zfar)
def makecube():
""" Generate vertices & indices for a filled cube """
vtype = [('a_position', np.float32, 3),
('a_texcoord', np.float32, 2)]
itype = np.uint32
# Vertices positions
p = np.array([[1, 1, 1], [-1, 1, 1], [-1, -1, 1], [1, -1, 1],
[1, -1, -1], [1, 1, -1], [-1, 1, -1], [-1, -1, -1]])
# Texture coords
t = np.array([[0, 0], [0, 1], [1, 1], [1, 0]])
faces_p = [0, 1, 2, 3, 0, 3, 4, 5, 0, 5, 6,
1, 1, 6, 7, 2, 7, 4, 3, 2, 4, 7, 6, 5]
faces_t = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2,
3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
vertices = np.zeros(24, vtype)
vertices['a_position'] = p[faces_p]
vertices['a_texcoord'] = t[faces_t]
indices = np.resize(
np.array([0, 1, 2, 0, 2, 3], dtype=itype), 6 * (2 * 3))
indices += np.repeat(4 * np.arange(6), 6).astype(np.uint32)
return vertices, indices
cube_vertex = """
uniform mat4 u_model;
uniform mat4 u_view;
uniform mat4 u_projection;
attribute vec3 a_position;
attribute vec2 a_texcoord;
varying vec2 v_texcoord;
void main()
{
gl_Position = u_projection * u_view * u_model * vec4(a_position,1.0);
v_texcoord = a_texcoord;
}
"""
cube_fragment = """
uniform sampler2D u_texture;
varying vec2 v_texcoord;
void main()
{
gl_FragColor = texture2D(u_texture, v_texcoord);
}
"""
class Canvas(app.Canvas):
def __init__(self):
app.Canvas.__init__(self, size=(512, 512),
title='Rotating cube (GL version)',
keys='interactive')
def on_initialize(self, event):
# Build & activate cube program
self.cube = gl.glCreateProgram()
vertex = gl.glCreateShader(gl.GL_VERTEX_SHADER)
fragment = gl.glCreateShader(gl.GL_FRAGMENT_SHADER)
gl.glShaderSource(vertex, cube_vertex)
gl.glShaderSource(fragment, cube_fragment)
gl.glCompileShader(vertex)
gl.glCompileShader(fragment)
gl.glAttachShader(self.cube, vertex)
gl.glAttachShader(self.cube, fragment)
gl.glLinkProgram(self.cube)
gl.glDetachShader(self.cube, vertex)
gl.glDetachShader(self.cube, fragment)
gl.glUseProgram(self.cube)
# Get data & build cube buffers
vcube_data, self.icube_data = makecube()
vcube = gl.glCreateBuffer()
gl.glBindBuffer(gl.GL_ARRAY_BUFFER, vcube)
gl.glBufferData(gl.GL_ARRAY_BUFFER, vcube_data, gl.GL_STATIC_DRAW)
icube = gl.glCreateBuffer()
gl.glBindBuffer(gl.GL_ELEMENT_ARRAY_BUFFER, icube)
gl.glBufferData(gl.GL_ELEMENT_ARRAY_BUFFER,
self.icube_data, gl.GL_STATIC_DRAW)
# Bind cube attributes
stride = vcube_data.strides[0]
offset = 0
loc = gl.glGetAttribLocation(self.cube, "a_position")
gl.glEnableVertexAttribArray(loc)
gl.glVertexAttribPointer(loc, 3, gl.GL_FLOAT, False, stride, offset)
offset = vcube_data.dtype["a_position"].itemsize
loc = gl.glGetAttribLocation(self.cube, "a_texcoord")
gl.glEnableVertexAttribArray(loc)
gl.glVertexAttribPointer(loc, 2, gl.GL_FLOAT, False, stride, offset)
# Create & bind cube texture
crate = checkerboard()
texture = gl.glCreateTexture()
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER,
gl.GL_LINEAR)
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER,
gl.GL_LINEAR)
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_S,
gl.GL_CLAMP_TO_EDGE)
gl.glTexParameterf(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_T,
gl.GL_CLAMP_TO_EDGE)
gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, gl.GL_LUMINANCE, gl.GL_LUMINANCE,
gl.GL_UNSIGNED_BYTE, crate.shape[:2])
gl.glTexSubImage2D(gl.GL_TEXTURE_2D, 0, 0, 0, gl.GL_LUMINANCE,
gl.GL_UNSIGNED_BYTE, crate)
loc = gl.glGetUniformLocation(self.cube, "u_texture")
gl.glUniform1i(loc, texture)
gl.glBindTexture(gl.GL_TEXTURE_2D, 0)
# Create & bind cube matrices
view = np.eye(4, dtype=np.float32)
model = np.eye(4, dtype=np.float32)
projection = np.eye(4, dtype=np.float32)
translate(view, 0, 0, -7)
self.phi, self.theta = 60, 20
rotate(model, self.theta, 0, 0, 1)
rotate(model, self.phi, 0, 1, 0)
loc = gl.glGetUniformLocation(self.cube, "u_model")
gl.glUniformMatrix4fv(loc, 1, False, model)
loc = gl.glGetUniformLocation(self.cube, "u_view")
gl.glUniformMatrix4fv(loc, 1, False, view)
loc = gl.glGetUniformLocation(self.cube, "u_projection")
gl.glUniformMatrix4fv(loc, 1, False, projection)
# OpenGL initalization
gl.glClearColor(0.30, 0.30, 0.35, 1.00)
gl.glEnable(gl.GL_DEPTH_TEST)
self._resize(*(self.size + self.physical_size))
self.timer = app.Timer('auto', self.on_timer, start=True)
def on_draw(self, event):
gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT)
gl.glDrawElements(gl.GL_TRIANGLES, self.icube_data.size,
gl.GL_UNSIGNED_INT, None)
def on_resize(self, event):
self._resize(*(event.size + event.physical_size))
def _resize(self, width, height, physical_width, physical_height):
gl.glViewport(0, 0, physical_width, physical_height)
projection = perspective(35.0, width / float(height), 2.0, 10.0)
loc = gl.glGetUniformLocation(self.cube, "u_projection")
gl.glUniformMatrix4fv(loc, 1, False, projection)
def on_timer(self, event):
self.theta += .5
self.phi += .5
model = np.eye(4, dtype=np.float32)
rotate(model, self.theta, 0, 0, 1)
rotate(model, self.phi, 0, 1, 0)
loc = gl.glGetUniformLocation(self.cube, "u_model")
gl.glUniformMatrix4fv(loc, 1, False, model)
self.update()
if __name__ == '__main__':
c = Canvas()
c.show()
app.run()
|