1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
# Author: Nicolas P .Rougier
# Date: 04/03/2014
# -----------------------------------------------------------------------------
"""
Show a rotating cube with lighting
==================================
"""
import numpy as np
from vispy import gloo, app
from vispy.gloo import Program, VertexBuffer, IndexBuffer
from vispy.util.transforms import perspective, translate, rotate
from vispy.geometry import create_cube
vertex = """
uniform mat4 u_model;
uniform mat4 u_view;
uniform mat4 u_projection;
uniform vec4 u_color;
attribute vec3 position;
attribute vec2 texcoord;
attribute vec3 normal;
attribute vec4 color;
varying vec3 v_position;
varying vec3 v_normal;
varying vec4 v_color;
void main()
{
v_normal = normal;
v_position = position;
v_color = color * u_color;
gl_Position = u_projection * u_view * u_model * vec4(position,1.0);
}
"""
fragment = """
uniform mat4 u_model;
uniform mat4 u_view;
uniform mat4 u_normal;
uniform vec3 u_light_intensity;
uniform vec3 u_light_position;
varying vec3 v_position;
varying vec3 v_normal;
varying vec4 v_color;
void main()
{
// Calculate normal in world coordinates
vec3 normal = normalize(u_normal * vec4(v_normal,1.0)).xyz;
// Calculate the location of this fragment (pixel) in world coordinates
vec3 position = vec3(u_view*u_model * vec4(v_position, 1));
// Calculate the vector from this pixels surface to the light source
vec3 surfaceToLight = u_light_position - position;
// Calculate the cosine of the angle of incidence (brightness)
float brightness = dot(normal, surfaceToLight) /
(length(surfaceToLight) * length(normal));
brightness = max(min(brightness,1.0),0.0);
// Calculate final color of the pixel, based on:
// 1. The angle of incidence: brightness
// 2. The color/intensities of the light: light.intensities
// 3. The texture and texture coord: texture(tex, fragTexCoord)
gl_FragColor = v_color * brightness * vec4(u_light_intensity, 1);
}
"""
class Canvas(app.Canvas):
def __init__(self):
app.Canvas.__init__(self, size=(512, 512), title='Lighted cube',
keys='interactive')
self.timer = app.Timer('auto', self.on_timer)
# Build cube data
V, F, outline = create_cube()
vertices = VertexBuffer(V)
self.faces = IndexBuffer(F)
self.outline = IndexBuffer(outline)
# Build view, model, projection & normal
# --------------------------------------
self.view = translate((0, 0, -5))
model = np.eye(4, dtype=np.float32)
normal = np.array(np.matrix(np.dot(self.view, model)).I.T)
# Build program
# --------------------------------------
self.program = Program(vertex, fragment)
self.program.bind(vertices)
self.program["u_light_position"] = 2, 2, 2
self.program["u_light_intensity"] = 1, 1, 1
self.program["u_model"] = model
self.program["u_view"] = self.view
self.program["u_normal"] = normal
self.phi, self.theta = 0, 0
self.activate_zoom()
# OpenGL initialization
# --------------------------------------
gloo.set_state(clear_color=(0.30, 0.30, 0.35, 1.00), depth_test=True,
polygon_offset=(1, 1),
blend_func=('src_alpha', 'one_minus_src_alpha'),
line_width=0.75)
self.timer.start()
self.show()
def on_draw(self, event):
gloo.clear(color=True, depth=True)
# program.draw(gl.GL_TRIANGLES, indices)
# Filled cube
gloo.set_state(blend=False, depth_test=True, polygon_offset_fill=True)
self.program['u_color'] = 1, 1, 1, 1
self.program.draw('triangles', self.faces)
# Outlined cube
gloo.set_state(polygon_offset_fill=False, blend=True, depth_mask=False)
self.program['u_color'] = 0, 0, 0, 1
self.program.draw('lines', self.outline)
gloo.set_state(depth_mask=True)
def on_resize(self, event):
self.activate_zoom()
def activate_zoom(self):
gloo.set_viewport(0, 0, *self.physical_size)
projection = perspective(45.0, self.size[0] / float(self.size[1]),
2.0, 10.0)
self.program['u_projection'] = projection
def on_timer(self, event):
self.theta += .5
self.phi += .5
model = np.dot(rotate(self.theta, (0, 0, 1)),
rotate(self.phi, (0, 1, 0)))
normal = np.linalg.inv(np.dot(self.view, model)).T
self.program['u_model'] = model
self.program['u_normal'] = normal
self.update()
if __name__ == '__main__':
c = Canvas()
app.run()
|