File: colormap.py

package info (click to toggle)
python-vispy 0.15.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,868 kB
  • sloc: python: 59,799; javascript: 6,800; makefile: 69; sh: 6
file content (1213 lines) | stat: -rw-r--r-- 45,750 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
# -*- coding: utf-8 -*-
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.

from __future__ import division  # just to be safe...
import warnings

import re
import numpy as np

from .color_array import ColorArray, Color
from ..ext.cubehelix import cubehelix
from hsluv import hsluv_to_rgb
from ..util.check_environment import has_matplotlib
import vispy.gloo

###############################################################################
# Color maps

# Length of the texture map used for luminance to RGBA conversion
LUT_len = 1024


# Utility functions for interpolation in NumPy.
def _vector_or_scalar(x, type='row'):
    """Convert an object to either a scalar or a row or column vector."""
    if isinstance(x, (list, tuple)):
        x = np.array(x)
    if isinstance(x, np.ndarray):
        assert x.ndim == 1
        if type == 'column':
            x = x[:, None]
    return x


def _vector(x, type='row'):
    """Convert an object to a row or column vector."""
    if isinstance(x, (list, tuple)):
        x = np.array(x, dtype=np.float32)
    elif not isinstance(x, np.ndarray):
        x = np.array([x], dtype=np.float32)
    assert x.ndim == 1
    if type == 'column':
        x = x[:, None]
    return x


def _find_controls(x, controls=None, clip=None):
    x_controls = np.clip(np.searchsorted(controls, x) - 1, 0, clip)
    return x_controls.astype(np.int32)


# Normalization
def _normalize(x, cmin=None, cmax=None, clip=True):
    """Normalize an array from the range [cmin, cmax] to [0,1],
    with optional clipping.
    """
    if not isinstance(x, np.ndarray):
        x = np.array(x)
    if cmin is None:
        cmin = x.min()
    if cmax is None:
        cmax = x.max()
    if cmin == cmax:
        return .5 * np.ones(x.shape)
    else:
        cmin, cmax = float(cmin), float(cmax)
        y = (x - cmin) * 1. / (cmax - cmin)
        if clip:
            y = np.clip(y, 0., 1.)
        return y


# Interpolation functions in NumPy.
def _mix_simple(a, b, x):
    """Mix b (with proportion x) with a."""
    x = np.clip(x, 0.0, 1.0)
    return (1.0 - x)*a + x*b


def _interpolate_multi(colors, x, controls):
    x = x.ravel()
    n = len(colors)
    # For each element in x, the control index of its bin's left boundary.
    x_step = _find_controls(x, controls, n-2)
    # The length of each bin.
    controls_length = np.diff(controls).astype(np.float32)
    # Prevent division by zero error.
    controls_length[controls_length == 0.] = 1.
    # Like x, but relative to each bin.
    _to_clip = x - controls[x_step]
    _to_clip /= controls_length[x_step]
    x_rel = np.clip(_to_clip, 0., 1.)
    return (colors[x_step],
            colors[x_step + 1],
            x_rel[:, None])


def mix(colors, x, controls=None):
    a, b, x_rel = _interpolate_multi(colors, x, controls)
    return _mix_simple(a, b, x_rel)


def smoothstep(edge0, edge1, x):
    """Performs smooth Hermite interpolation
    between 0 and 1 when edge0 < x < edge1.
    """
    # Scale, bias and saturate x to 0..1 range
    x = np.clip((x - edge0)/(edge1 - edge0), 0.0, 1.0)
    # Evaluate polynomial
    return x*x*(3 - 2*x)


def step(colors, x, controls=None):
    x = x.ravel()
    """Step interpolation from a set of colors. x belongs in [0, 1]."""
    assert (controls[0], controls[-1]) == (0., 1.)
    ncolors = len(colors)
    assert ncolors == len(controls) - 1
    assert ncolors >= 2
    x_step = _find_controls(x, controls, ncolors-1)
    return colors[x_step, ...]


# GLSL interpolation functions.
def _glsl_mix(controls=None, colors=None, texture_map_data=None):
    """Generate a GLSL template function from a given interpolation patterns
    and control points.

    Parameters
    ----------
    colors : array-like, shape (n_colors, 4)
        The control colors used by the colormap.
        Elements of colors must be convertible to an instance of Color-class.

    controls : list
        The list of control points for the given colors. It should be
        an increasing list of floating-point number between 0.0 and 1.0.
        The first control point must be 0.0. The last control point must be
        1.0. The number of control points depends on the interpolation scheme.

    texture_map_data : ndarray, shape(texture_len, 4)
        Numpy array of size of 1D texture lookup data
        for luminance to RGBA conversion.
    """
    assert (controls[0], controls[-1]) == (0., 1.)
    ncolors = len(controls)
    assert ncolors >= 2
    assert (texture_map_data is not None)

    LUT = texture_map_data
    texture_len = texture_map_data.shape[0]

    # Perform linear interpolation for each RGBA color component.
    c_rgba = ColorArray(colors)._rgba
    x = np.linspace(0.0, 1.0, texture_len)
    LUT[:, 0, 0] = np.interp(x, controls, c_rgba[:, 0])
    LUT[:, 0, 1] = np.interp(x, controls, c_rgba[:, 1])
    LUT[:, 0, 2] = np.interp(x, controls, c_rgba[:, 2])
    LUT[:, 0, 3] = np.interp(x, controls, c_rgba[:, 3])

    return """
    uniform sampler2D texture2D_LUT;
    vec4 colormap(float t) {
        return texture2D(texture2D_LUT, vec2(0.0, clamp(t, 0.0, 1.0)));
    }
    """


def _glsl_step(controls=None, colors=None, texture_map_data=None):
    assert (controls[0], controls[-1]) == (0., 1.)
    ncolors = len(controls) - 1
    assert ncolors >= 2
    assert (texture_map_data is not None)

    LUT = texture_map_data
    texture_len = texture_map_data.shape[0]
    LUT_tex_idx = np.linspace(0.0, 1.0, texture_len)

    # Replicate indices to colormap texture.
    # The resulting matrix has size of (texture_len,len(controls)).
    # It is used to perform piecewise constant interpolation
    # for each RGBA color component.
    t2 = np.repeat(LUT_tex_idx[:, np.newaxis], len(controls), 1)

    # Perform element-wise comparison to find
    # control points for all LUT colors.
    bn = np.sum(controls.transpose() <= t2, axis=1)

    j = np.clip(bn-1, 0, ncolors-1)

    # Copying color data from ColorArray to array-like
    # makes data assignment to LUT faster.
    colors_rgba = ColorArray(colors[:])._rgba
    LUT[:, 0, :] = colors_rgba[j]

    return """
    uniform sampler2D texture2D_LUT;
    vec4 colormap(float t) {
        return texture2D(texture2D_LUT, vec2(0.0, clamp(t, 0.0, 1.0)));
    }
    """


# Mini GLSL template system for colors.
def _process_glsl_template(template, colors):
    """Replace $color_i by color #i in the GLSL template."""
    for i in range(len(colors) - 1, -1, -1):
        color = colors[i]
        assert len(color) == 4
        vec4_color = 'vec4(%.3f, %.3f, %.3f, %.3f)' % tuple(color)
        template = template.replace('$color_%d' % i, vec4_color)
    return template


class BaseColormap(object):
    u"""Class representing a colormap:

        t in [0, 1] --> rgba_color

    Parameters
    ----------
    colors : list of lists, tuples, or ndarrays
        The control colors used by the colormap (shape = (ncolors, 4)).
    bad_color : None | array-like
        The color mapping for NaN values.
    high_color : None | array-like
        The color mapping for values greater than or equal to 1.
    low_color : None | array-like
        The color mapping for values less than or equal to 0.

    Notes
    -----
    Must be overriden. Child classes need to implement:

    glsl_map : string
        The GLSL function for the colormap. Use $color_0 to refer
        to the first color in `colors`, and so on. These are vec4 vectors.
    map(item) : function
        Takes a (N, 1) vector of values in [0, 1], and returns a rgba array
        of size (N, 4).
    """

    # Control colors used by the colormap.
    colors = None
    bad_color = None
    high_color = None
    low_color = None

    # GLSL string with a function implementing the color map.
    glsl_map = None

    # Texture map data used by the 'colormap' GLSL function
    # for luminance to RGBA conversion.
    texture_map_data = None

    def __init__(self, colors=None, *, bad_color=None, low_color=None, high_color=None):
        # Ensure the colors are arrays.
        if colors is not None:
            self.colors = colors
        if not isinstance(self.colors, ColorArray):
            self.colors = ColorArray(self.colors)
        # Process the GLSL map function by replacing $color_i by the
        if len(self.colors) > 0:
            self.glsl_map = _process_glsl_template(self.glsl_map,
                                                   self.colors.rgba)
        if high_color is not None:
            self.high_color = Color(high_color)
            self._set_high_color_glsl()
        if low_color is not None:
            self.low_color = Color(low_color)
            self._set_low_color_glsl()

        self.bad_color = Color((0, 0, 0, 0) if bad_color is None else bad_color)
        self._set_bad_color_glsl()

    def _set_bad_color_glsl(self):
        """Set the color mapping for NaN values."""
        r, g, b, a = self.bad_color.rgba

        bad_color_glsl = f"""
        // Map NaN to bad_color
        if (!(t <= 0.0 || 0.0 <= t)) {{
            return vec4({r:.3f}, {g:.3f}, {b:.3f}, {a:.3f});
        }}"""

        self.glsl_map = re.sub(r'float t\) \{', f'float t) {{{bad_color_glsl}', self.glsl_map)

    def _set_high_color_glsl(self):
        """Set the color mapping for values greater than or equal to max clim."""
        r, g, b, a = self.high_color.rgba

        high_color_glsl = f"""
        // Map high_color
        if (1 - t <= 1e-12) {{ // use epsilon to work around numerical imprecision
            return vec4({r:.3f}, {g:.3f}, {b:.3f}, {a:.3f});
        }}"""

        self.glsl_map = re.sub(r'float t\) \{', f'float t) {{{high_color_glsl}', self.glsl_map)

    def _set_low_color_glsl(self):
        """Set the color mapping for values less than or equal to min clim."""
        r, g, b, a = self.low_color.rgba

        low_color_glsl = f"""
        // Map low_color
        if (t <= 1e-12) {{ // use epsilon to work around numerical imprecision
            return vec4({r:.3f}, {g:.3f}, {b:.3f}, {a:.3f});
        }}"""

        self.glsl_map = re.sub(r'float t\) \{', f'float t) {{{low_color_glsl}', self.glsl_map)

    def map(self, item):
        """Return a rgba array for the requested items.

        This function must be overriden by child classes.

        This function doesn't need to implement argument checking on `item`.
        It can always assume that `item` is a (N, 1) array of values between
        0 and 1.

        Parameters
        ----------
        item : ndarray
            An array of values in [0,1].

        Returns
        -------
        rgba : ndarray
            An array with rgba values, with one color per item. The shape
            should be ``item.shape + (4,)``.

        Notes
        -----
        Users are expected to use a colormap with ``__getitem__()`` rather
        than ``map()`` (which implements a lower-level API).

        """
        raise NotImplementedError()

    def _map_edge_case_colors(self, param, colors):
        """Apply special mapping to edge cases (NaN and max/min clim)."""
        colors = np.where(np.isnan(param.reshape(-1, 1)), self.bad_color.rgba, colors)
        if self.high_color is not None:
            colors = np.where((param == 1).reshape(-1, 1), self.high_color.rgba, colors)
        if self.low_color is not None:
            colors = np.where((param == 0).reshape(-1, 1), self.low_color.rgba, colors)
        return colors

    def texture_lut(self):
        """Return a texture2D object for LUT after its value is set. Can be None."""
        return None

    def __getitem__(self, item):
        if isinstance(item, tuple):
            raise ValueError('ColorArray indexing is only allowed along '
                             'the first dimension.')
        # Ensure item is either a scalar or a column vector.
        item = _vector(item, type='column')
        # Clip the values in [0, 1].
        item = np.clip(item, 0., 1.)
        colors = self.map(item)
        return ColorArray(colors)

    def __setitem__(self, item, value):
        raise RuntimeError("It is not possible to set items to "
                           "BaseColormap instances.")

    def _repr_html_(self):
        n = 100
        html = ("""
                <style>
                    table.vispy_colormap {
                        height: 30px;
                        border: 0;
                        margin: 0;
                        padding: 0;
                    }

                    table.vispy_colormap td {
                        width: 3px;
                        border: 0;
                        margin: 0;
                        padding: 0;
                    }
                </style>
                <table class="vispy_colormap">
                """ +
                '\n'.join([(("""<td style="background-color: %s;"
                                 title="%s"></td>""") % (color, color))
                           for color in self[np.linspace(0., 1., n)].hex]) +
                """
                </table>
                """)
        return html


def _default_controls(ncolors):
    """Generate linearly spaced control points from a set of colors."""
    return np.linspace(0., 1., ncolors)


# List the parameters of every supported interpolation mode.
_interpolation_info = {
    'linear': {
        'ncontrols': lambda ncolors: ncolors,  # take ncolors as argument
        'glsl_map': _glsl_mix,  # take 'controls' and 'colors' as arguments
        'map': mix,
    },
    'zero': {
        'ncontrols': lambda ncolors: (ncolors+1),
        'glsl_map': _glsl_step,
        'map': step,
    }
}


class Colormap(BaseColormap):
    """A colormap defining several control colors and an interpolation scheme.

    Parameters
    ----------
    colors : list of colors | ColorArray
        The list of control colors. If not a ``ColorArray``, a new
        ``ColorArray`` instance is created from this list. See the
        documentation of ``ColorArray``.
    controls : array-like
        The list of control points for the given colors. It should be
        an increasing list of floating-point number between 0.0 and 1.0.
        The first control point must be 0.0. The last control point must be
        1.0. The number of control points depends on the interpolation scheme.
    interpolation : str
        The interpolation mode of the colormap. Default: 'linear'. Can also
        be 'zero'.
        If 'linear', ncontrols = ncolors (one color per control point).
        If 'zero', ncontrols = ncolors+1 (one color per bin).
    bad_color : None | array-like
        The color mapping for NaN values.
    high_color : None | array-like
        The color mapping for values greater than or equal to 1.
    low_color : None | array-like
        The color mapping for values less than or equal to 0.

    Examples
    --------
    Here is a basic example:

        >>> from vispy.color import Colormap
        >>> cm = Colormap(['r', 'g', 'b'])
        >>> cm[0.], cm[0.5], cm[np.linspace(0., 1., 100)]

    """

    def __init__(self, colors, controls=None, interpolation='linear', *,
                 bad_color=None, low_color=None, high_color=None):
        self.interpolation = interpolation
        ncontrols = self._ncontrols(len(colors))
        # Default controls.
        if controls is None:
            controls = _default_controls(ncontrols)
        assert len(controls) == ncontrols
        self._controls = np.array(controls, dtype=np.float32)
        # use texture map for luminance to RGBA conversion
        self.texture_map_data = np.zeros((LUT_len, 1, 4), dtype=np.float32)
        self.glsl_map = self._glsl_map_generator(self._controls, colors,
                                                 self.texture_map_data)
        super(Colormap, self).__init__(colors, bad_color=bad_color,
                                       high_color=high_color, low_color=low_color)

    @property
    def interpolation(self):
        """The interpolation mode of the colormap"""
        return self._interpolation

    @interpolation.setter
    def interpolation(self, val):
        if val not in _interpolation_info:
            raise ValueError('The interpolation mode can only be one of: ' +
                             ', '.join(sorted(_interpolation_info.keys())))
        # Get the information of the interpolation mode.
        info = _interpolation_info[val]
        # Get the function that generates the GLSL map, as a function of the
        # controls array.
        self._glsl_map_generator = info['glsl_map']
        # Number of controls as a function of the number of colors.
        self._ncontrols = info['ncontrols']
        # Python map function.
        self._map_function = info['map']
        self._interpolation = val

    def map(self, x):
        """The Python mapping function from the [0,1] interval to a
        list of rgba colors

        Parameters
        ----------
        x : array-like
            The values to map.

        Returns
        -------
        colors : list
            List of rgba colors.
        """
        colors = self._map_function(self.colors.rgba, x, self._controls)
        return self._map_edge_case_colors(x, colors)

    def texture_lut(self):
        """Return a texture2D object for LUT after its value is set. Can be None."""
        if self.texture_map_data is None:
            return None
        interp = 'linear' if self.interpolation == 'linear' else 'nearest'
        texture_LUT = vispy.gloo.Texture2D(np.zeros(self.texture_map_data.shape, dtype=np.float32),
                                           interpolation=interp)
        texture_LUT.set_data(self.texture_map_data, offset=None, copy=True)
        return texture_LUT


class MatplotlibColormap(Colormap):
    """Use matplotlib colormaps if installed.

    Parameters
    ----------
    name : string
        Name of the colormap.
    """

    def __init__(self, name):
        from matplotlib.cm import ScalarMappable

        vec = ScalarMappable(cmap=name).to_rgba(np.arange(LUT_len))
        Colormap.__init__(self, vec)


class CubeHelixColormap(Colormap):
    def __init__(self, start=0.5, rot=1, gamma=1.0, reverse=True, nlev=32,
                 minSat=1.2, maxSat=1.2, minLight=0., maxLight=1., **kwargs):
        """Cube helix colormap

        A full implementation of Dave Green's "cubehelix" for Matplotlib.
        Based on the FORTRAN 77 code provided in
        D.A. Green, 2011, BASI, 39, 289.

        http://adsabs.harvard.edu/abs/2011arXiv1108.5083G

        User can adjust all parameters of the cubehelix algorithm.
        This enables much greater flexibility in choosing color maps, while
        always ensuring the color map scales in intensity from black
        to white. A few simple examples:

        Default color map settings produce the standard "cubehelix".

        Create color map in only blues by setting rot=0 and start=0.

        Create reverse (white to black) backwards through the rainbow once
        by setting rot=1 and reverse=True.

        Parameters
        ----------
        start : scalar, optional
            Sets the starting position in the color space. 0=blue, 1=red,
            2=green. Defaults to 0.5.
        rot : scalar, optional
            The number of rotations through the rainbow. Can be positive
            or negative, indicating direction of rainbow. Negative values
            correspond to Blue->Red direction. Defaults to -1.5
        gamma : scalar, optional
            The gamma correction for intensity. Defaults to 1.0
        reverse : boolean, optional
            Set to True to reverse the color map. Will go from black to
            white. Good for density plots where shade~density. Defaults to
            False
        nlev : scalar, optional
            Defines the number of discrete levels to render colors at.
            Defaults to 32.
        sat : scalar, optional
            The saturation intensity factor. Defaults to 1.2
            NOTE: this was formerly known as "hue" parameter
        minSat : scalar, optional
            Sets the minimum-level saturation. Defaults to 1.2
        maxSat : scalar, optional
            Sets the maximum-level saturation. Defaults to 1.2
        startHue : scalar, optional
            Sets the starting color, ranging from [0, 360], as in
            D3 version by @mbostock
            NOTE: overrides values in start parameter
        endHue : scalar, optional
            Sets the ending color, ranging from [0, 360], as in
            D3 version by @mbostock
            NOTE: overrides values in rot parameter
        minLight : scalar, optional
            Sets the minimum lightness value. Defaults to 0.
        maxLight : scalar, optional
            Sets the maximum lightness value. Defaults to 1.
        """
        super(CubeHelixColormap, self).__init__(
            cubehelix(start=start, rot=rot, gamma=gamma, reverse=reverse,
                      nlev=nlev, minSat=minSat, maxSat=maxSat,
                      minLight=minLight, maxLight=maxLight, **kwargs))


class _Fire(BaseColormap):
    colors = [(1.0, 1.0, 1.0, 1.0),
              (1.0, 1.0, 0.0, 1.0),
              (1.0, 0.0, 0.0, 1.0)]

    glsl_map = """
    vec4 fire(float t) {
        return mix(mix($color_0, $color_1, t),
                   mix($color_1, $color_2, t*t), t);
    }
    """

    def map(self, t):
        a, b, d = self.colors.rgba
        c = _mix_simple(a, b, t)
        e = _mix_simple(b, d, t**2)
        colors = np.atleast_2d(_mix_simple(c, e, t))
        return self._map_edge_case_colors(t, colors)


class _Grays(BaseColormap):
    glsl_map = """
    vec4 grays(float t) {
        return vec4(t, t, t, 1.0);
    }
    """

    def map(self, t):
        colors = np.c_[t, t, t, np.ones(t.shape)]
        return self._map_edge_case_colors(t, colors)


class _Ice(BaseColormap):
    glsl_map = """
    vec4 ice(float t) {
        return vec4(t, t, 1.0, 1.0);
    }
    """

    def map(self, t):
        colors = np.c_[t, t, np.ones(t.shape), np.ones(t.shape)]
        return self._map_edge_case_colors(t, colors)


class _Hot(BaseColormap):
    colors = [(0., .33, .66, 1.0),
              (.33, .66, 1., 1.0)]

    glsl_map = """
    vec4 hot(float t) {
        return vec4(smoothstep($color_0.rgb, $color_1.rgb, vec3(t, t, t)),
                    1.0);
    }
    """

    def map(self, t):
        rgba = self.colors.rgba
        smoothed = smoothstep(rgba[0, :3], rgba[1, :3], t)
        colors = np.hstack((smoothed, np.ones((len(t), 1))))
        return self._map_edge_case_colors(t, colors)


class _Winter(BaseColormap):
    colors = [(0.0, 0.0, 1.0, 1.0),
              (0.0, 1.0, 0.5, 1.0)]

    glsl_map = """
    vec4 winter(float t) {
        return mix($color_0, $color_1, sqrt(t));
    }
    """

    def map(self, t):
        colors = _mix_simple(self.colors.rgba[0],
                           self.colors.rgba[1],
                           np.sqrt(t))
        return self._map_edge_case_colors(t, colors)


class _HiLo(_Grays):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs, low_color='blue', high_color='red')


class SingleHue(Colormap):
    """A colormap which is solely defined by the given hue and value.

    Given the color hue and value, this color map increases the saturation
    of a color. The start color is almost white but still contains a hint of
    the given color, and at the end the color is fully saturated.

    Parameters
    ----------
    hue : scalar, optional
        The hue refers to a "true" color, without any shading or tinting.
        Must be in the range [0, 360]. Defaults to 200 (blue).
    saturation_range : array-like, optional
        The saturation represents how "pure" a color is. Less saturation means
        more white light mixed in the color. A fully saturated color means
        the pure color defined by the hue. No saturation means completely
        white. This colormap changes the saturation, and with this parameter
        you can specify the lower and upper bound. Default is [0.2, 0.8].
    value : scalar, optional
        The value defines the "brightness" of a color: a value of 0.0 means
        completely black while a value of 1.0 means the color defined by the
        hue without shading. Must be in the range [0, 1.0]. The default value
        is 1.0.

    Notes
    -----
    For more information about the hue values see the `wikipedia page`_.

    .. _wikipedia page: https://en.wikipedia.org/wiki/Hue
    """

    def __init__(self, hue=200, saturation_range=[0.1, 0.8], value=1.0):
        colors = ColorArray([
            (hue, saturation_range[0], value),
            (hue, saturation_range[1], value)
        ], color_space='hsv')
        super(SingleHue, self).__init__(colors)


class HSL(Colormap):
    """A colormap which is defined by n evenly spaced points in a circular color space.

    This means that we change the hue value while keeping the
    saturation and value constant.

    Parameters
    ----------
    n_colors : int, optional
        The number of colors to generate.
    hue_start : int, optional
        The hue start value. Must be in the range [0, 360], the default is 0.
    saturation : float, optional
        The saturation component of the colors to generate. The default is
        fully saturated (1.0). Must be in the range [0, 1.0].
    value : float, optional
        The value (brightness) component of the colors to generate. Must
        be in the range [0, 1.0], and the default is 1.0
    controls : array-like, optional
        The list of control points for the colors to generate. It should be
        an increasing list of floating-point number between 0.0 and 1.0.
        The first control point must be 0.0. The last control point must be
        1.0. The number of control points depends on the interpolation scheme.
    interpolation : str, optional
        The interpolation mode of the colormap. Default: 'linear'. Can also
        be 'zero'.
        If 'linear', ncontrols = ncolors (one color per control point).
        If 'zero', ncontrols = ncolors+1 (one color per bin).
    """

    def __init__(self, ncolors=6, hue_start=0, saturation=1.0, value=1.0,
                 controls=None, interpolation='linear'):
        hues = np.linspace(0, 360, ncolors + 1)[:-1]
        hues += hue_start
        hues %= 360

        colors = ColorArray([(hue, saturation, value) for hue in hues],
                            color_space='hsv')

        super(HSL, self).__init__(colors, controls=controls,
                                  interpolation=interpolation)


class HSLuv(Colormap):
    """A colormap which is defined by n evenly spaced points in the HSLuv space.

    Parameters
    ----------
    n_colors : int, optional
        The number of colors to generate.
    hue_start : int, optional
        The hue start value. Must be in the range [0, 360], the default is 0.
    saturation : float, optional
        The saturation component of the colors to generate. The default is
        fully saturated (1.0). Must be in the range [0, 1.0].
    value : float, optional
        The value component of the colors to generate or "brightness". Must
        be in the range [0, 1.0], and the default is 0.7.
    controls : array-like, optional
        The list of control points for the colors to generate. It should be
        an increasing list of floating-point number between 0.0 and 1.0.
        The first control point must be 0.0. The last control point must be
        1.0. The number of control points depends on the interpolation scheme.
    interpolation : str, optional
        The interpolation mode of the colormap. Default: 'linear'. Can also
        be 'zero'.
        If 'linear', ncontrols = ncolors (one color per control point).
        If 'zero', ncontrols = ncolors+1 (one color per bin).

    Notes
    -----
    For more information about HSLuv colors see https://www.hsluv.org/
    """

    def __init__(self, ncolors=6, hue_start=0, saturation=1.0, value=0.7,
                 controls=None, interpolation='linear'):
        hues = np.linspace(0, 360, ncolors + 1)[:-1]
        hues += hue_start
        hues %= 360

        saturation *= 99
        value *= 99

        colors = ColorArray(
            [hsluv_to_rgb([hue, saturation, value]) for hue in hues],
        )

        super(HSLuv, self).__init__(colors, controls=controls,
                                    interpolation=interpolation)


class _HUSL(HSLuv):
    """Deprecated."""

    def __init__(self, *args, **kwargs):
        warnings.warn("_HUSL Colormap is deprecated. Please use 'HSLuv' instead.")
        super().__init__(*args, **kwargs)


class Diverging(Colormap):

    def __init__(self, h_pos=20, h_neg=250, saturation=1.0, value=0.7,
                 center="light"):
        saturation *= 99
        value *= 99

        start = hsluv_to_rgb([h_neg, saturation, value])
        mid = ((0.133, 0.133, 0.133) if center == "dark" else
               (0.92, 0.92, 0.92))
        end = hsluv_to_rgb([h_pos, saturation, value])

        colors = ColorArray([start, mid, end])

        super(Diverging, self).__init__(colors)


class RedYellowBlueCyan(Colormap):
    """A colormap which goes red-yellow positive and blue-cyan negative

    Parameters
    ----------
    limits : array-like, optional
        The limits for the fully transparent, opaque red, and yellow points.
    """

    def __init__(self, limits=(0.33, 0.66, 1.0)):
        limits = np.array(limits, float).ravel()
        if len(limits) != 3:
            raise ValueError('limits must have 3 values')
        if (np.diff(limits) < 0).any() or (limits <= 0).any():
            raise ValueError('limits must be strictly increasing and positive')
        controls = np.array([-limits[2], -limits[1], -limits[0],
                             limits[0], limits[1], limits[2]])
        controls = ((controls / limits[2]) + 1) / 2.
        colors = [(0., 1., 1., 1.), (0., 0., 1., 1.), (0., 0., 1., 0.),
                  (1., 0., 0., 0.), (1., 0., 0., 1.), (1., 1., 0., 1.)]
        colors = ColorArray(colors)
        super(RedYellowBlueCyan, self).__init__(
            colors, controls=controls, interpolation='linear')


# https://github.com/matplotlib/matplotlib/pull/4707/files#diff-893cf0348279e9f4570488a7a297ab1eR774  # noqa
# Taken from original Viridis colormap data in matplotlib implementation
#
# Issue #1331 https://github.com/vispy/vispy/issues/1331 explains that the
# 128 viridis sample size fails on some GPUs
# but lowering to 64 samples allows more GPUs to use viridis.
#
# VisPy has beem updated to use a texture map lookup.
# Thus, sampling of the Viridis colormap data is no longer necessary.
_viridis_data = [[0.267004, 0.004874, 0.329415],
                 [0.268510, 0.009605, 0.335427],
                 [0.269944, 0.014625, 0.341379],
                 [0.271305, 0.019942, 0.347269],
                 [0.272594, 0.025563, 0.353093],
                 [0.273809, 0.031497, 0.358853],
                 [0.274952, 0.037752, 0.364543],
                 [0.276022, 0.044167, 0.370164],
                 [0.277018, 0.050344, 0.375715],
                 [0.277941, 0.056324, 0.381191],
                 [0.278791, 0.062145, 0.386592],
                 [0.279566, 0.067836, 0.391917],
                 [0.280267, 0.073417, 0.397163],
                 [0.280894, 0.078907, 0.402329],
                 [0.281446, 0.084320, 0.407414],
                 [0.281924, 0.089666, 0.412415],
                 [0.282327, 0.094955, 0.417331],
                 [0.282656, 0.100196, 0.422160],
                 [0.282910, 0.105393, 0.426902],
                 [0.283091, 0.110553, 0.431554],
                 [0.283197, 0.115680, 0.436115],
                 [0.283229, 0.120777, 0.440584],
                 [0.283187, 0.125848, 0.444960],
                 [0.283072, 0.130895, 0.449241],
                 [0.282884, 0.135920, 0.453427],
                 [0.282623, 0.140926, 0.457517],
                 [0.282290, 0.145912, 0.461510],
                 [0.281887, 0.150881, 0.465405],
                 [0.281412, 0.155834, 0.469201],
                 [0.280868, 0.160771, 0.472899],
                 [0.280255, 0.165693, 0.476498],
                 [0.279574, 0.170599, 0.479997],
                 [0.278826, 0.175490, 0.483397],
                 [0.278012, 0.180367, 0.486697],
                 [0.277134, 0.185228, 0.489898],
                 [0.276194, 0.190074, 0.493001],
                 [0.275191, 0.194905, 0.496005],
                 [0.274128, 0.199721, 0.498911],
                 [0.273006, 0.204520, 0.501721],
                 [0.271828, 0.209303, 0.504434],
                 [0.270595, 0.214069, 0.507052],
                 [0.269308, 0.218818, 0.509577],
                 [0.267968, 0.223549, 0.512008],
                 [0.266580, 0.228262, 0.514349],
                 [0.265145, 0.232956, 0.516599],
                 [0.263663, 0.237631, 0.518762],
                 [0.262138, 0.242286, 0.520837],
                 [0.260571, 0.246922, 0.522828],
                 [0.258965, 0.251537, 0.524736],
                 [0.257322, 0.256130, 0.526563],
                 [0.255645, 0.260703, 0.528312],
                 [0.253935, 0.265254, 0.529983],
                 [0.252194, 0.269783, 0.531579],
                 [0.250425, 0.274290, 0.533103],
                 [0.248629, 0.278775, 0.534556],
                 [0.246811, 0.283237, 0.535941],
                 [0.244972, 0.287675, 0.537260],
                 [0.243113, 0.292092, 0.538516],
                 [0.241237, 0.296485, 0.539709],
                 [0.239346, 0.300855, 0.540844],
                 [0.237441, 0.305202, 0.541921],
                 [0.235526, 0.309527, 0.542944],
                 [0.233603, 0.313828, 0.543914],
                 [0.231674, 0.318106, 0.544834],
                 [0.229739, 0.322361, 0.545706],
                 [0.227802, 0.326594, 0.546532],
                 [0.225863, 0.330805, 0.547314],
                 [0.223925, 0.334994, 0.548053],
                 [0.221989, 0.339161, 0.548752],
                 [0.220057, 0.343307, 0.549413],
                 [0.218130, 0.347432, 0.550038],
                 [0.216210, 0.351535, 0.550627],
                 [0.214298, 0.355619, 0.551184],
                 [0.212395, 0.359683, 0.551710],
                 [0.210503, 0.363727, 0.552206],
                 [0.208623, 0.367752, 0.552675],
                 [0.206756, 0.371758, 0.553117],
                 [0.204903, 0.375746, 0.553533],
                 [0.203063, 0.379716, 0.553925],
                 [0.201239, 0.383670, 0.554294],
                 [0.199430, 0.387607, 0.554642],
                 [0.197636, 0.391528, 0.554969],
                 [0.195860, 0.395433, 0.555276],
                 [0.194100, 0.399323, 0.555565],
                 [0.192357, 0.403199, 0.555836],
                 [0.190631, 0.407061, 0.556089],
                 [0.188923, 0.410910, 0.556326],
                 [0.187231, 0.414746, 0.556547],
                 [0.185556, 0.418570, 0.556753],
                 [0.183898, 0.422383, 0.556944],
                 [0.182256, 0.426184, 0.557120],
                 [0.180629, 0.429975, 0.557282],
                 [0.179019, 0.433756, 0.557430],
                 [0.177423, 0.437527, 0.557565],
                 [0.175841, 0.441290, 0.557685],
                 [0.174274, 0.445044, 0.557792],
                 [0.172719, 0.448791, 0.557885],
                 [0.171176, 0.452530, 0.557965],
                 [0.169646, 0.456262, 0.558030],
                 [0.168126, 0.459988, 0.558082],
                 [0.166617, 0.463708, 0.558119],
                 [0.165117, 0.467423, 0.558141],
                 [0.163625, 0.471133, 0.558148],
                 [0.162142, 0.474838, 0.558140],
                 [0.160665, 0.478540, 0.558115],
                 [0.159194, 0.482237, 0.558073],
                 [0.157729, 0.485932, 0.558013],
                 [0.156270, 0.489624, 0.557936],
                 [0.154815, 0.493313, 0.557840],
                 [0.153364, 0.497000, 0.557724],
                 [0.151918, 0.500685, 0.557587],
                 [0.150476, 0.504369, 0.557430],
                 [0.149039, 0.508051, 0.557250],
                 [0.147607, 0.511733, 0.557049],
                 [0.146180, 0.515413, 0.556823],
                 [0.144759, 0.519093, 0.556572],
                 [0.143343, 0.522773, 0.556295],
                 [0.141935, 0.526453, 0.555991],
                 [0.140536, 0.530132, 0.555659],
                 [0.139147, 0.533812, 0.555298],
                 [0.137770, 0.537492, 0.554906],
                 [0.136408, 0.541173, 0.554483],
                 [0.135066, 0.544853, 0.554029],
                 [0.133743, 0.548535, 0.553541],
                 [0.132444, 0.552216, 0.553018],
                 [0.131172, 0.555899, 0.552459],
                 [0.129933, 0.559582, 0.551864],
                 [0.128729, 0.563265, 0.551229],
                 [0.127568, 0.566949, 0.550556],
                 [0.126453, 0.570633, 0.549841],
                 [0.125394, 0.574318, 0.549086],
                 [0.124395, 0.578002, 0.548287],
                 [0.123463, 0.581687, 0.547445],
                 [0.122606, 0.585371, 0.546557],
                 [0.121831, 0.589055, 0.545623],
                 [0.121148, 0.592739, 0.544641],
                 [0.120565, 0.596422, 0.543611],
                 [0.120092, 0.600104, 0.542530],
                 [0.119738, 0.603785, 0.541400],
                 [0.119512, 0.607464, 0.540218],
                 [0.119423, 0.611141, 0.538982],
                 [0.119483, 0.614817, 0.537692],
                 [0.119699, 0.618490, 0.536347],
                 [0.120081, 0.622161, 0.534946],
                 [0.120638, 0.625828, 0.533488],
                 [0.121380, 0.629492, 0.531973],
                 [0.122312, 0.633153, 0.530398],
                 [0.123444, 0.636809, 0.528763],
                 [0.124780, 0.640461, 0.527068],
                 [0.126326, 0.644107, 0.525311],
                 [0.128087, 0.647749, 0.523491],
                 [0.130067, 0.651384, 0.521608],
                 [0.132268, 0.655014, 0.519661],
                 [0.134692, 0.658636, 0.517649],
                 [0.137339, 0.662252, 0.515571],
                 [0.140210, 0.665859, 0.513427],
                 [0.143303, 0.669459, 0.511215],
                 [0.146616, 0.673050, 0.508936],
                 [0.150148, 0.676631, 0.506589],
                 [0.153894, 0.680203, 0.504172],
                 [0.157851, 0.683765, 0.501686],
                 [0.162016, 0.687316, 0.499129],
                 [0.166383, 0.690856, 0.496502],
                 [0.170948, 0.694384, 0.493803],
                 [0.175707, 0.697900, 0.491033],
                 [0.180653, 0.701402, 0.488189],
                 [0.185783, 0.704891, 0.485273],
                 [0.191090, 0.708366, 0.482284],
                 [0.196571, 0.711827, 0.479221],
                 [0.202219, 0.715272, 0.476084],
                 [0.208030, 0.718701, 0.472873],
                 [0.214000, 0.722114, 0.469588],
                 [0.220124, 0.725509, 0.466226],
                 [0.226397, 0.728888, 0.462789],
                 [0.232815, 0.732247, 0.459277],
                 [0.239374, 0.735588, 0.455688],
                 [0.246070, 0.738910, 0.452024],
                 [0.252899, 0.742211, 0.448284],
                 [0.259857, 0.745492, 0.444467],
                 [0.266941, 0.748751, 0.440573],
                 [0.274149, 0.751988, 0.436601],
                 [0.281477, 0.755203, 0.432552],
                 [0.288921, 0.758394, 0.428426],
                 [0.296479, 0.761561, 0.424223],
                 [0.304148, 0.764704, 0.419943],
                 [0.311925, 0.767822, 0.415586],
                 [0.319809, 0.770914, 0.411152],
                 [0.327796, 0.773980, 0.406640],
                 [0.335885, 0.777018, 0.402049],
                 [0.344074, 0.780029, 0.397381],
                 [0.352360, 0.783011, 0.392636],
                 [0.360741, 0.785964, 0.387814],
                 [0.369214, 0.788888, 0.382914],
                 [0.377779, 0.791781, 0.377939],
                 [0.386433, 0.794644, 0.372886],
                 [0.395174, 0.797475, 0.367757],
                 [0.404001, 0.800275, 0.362552],
                 [0.412913, 0.803041, 0.357269],
                 [0.421908, 0.805774, 0.351910],
                 [0.430983, 0.808473, 0.346476],
                 [0.440137, 0.811138, 0.340967],
                 [0.449368, 0.813768, 0.335384],
                 [0.458674, 0.816363, 0.329727],
                 [0.468053, 0.818921, 0.323998],
                 [0.477504, 0.821444, 0.318195],
                 [0.487026, 0.823929, 0.312321],
                 [0.496615, 0.826376, 0.306377],
                 [0.506271, 0.828786, 0.300362],
                 [0.515992, 0.831158, 0.294279],
                 [0.525776, 0.833491, 0.288127],
                 [0.535621, 0.835785, 0.281908],
                 [0.545524, 0.838039, 0.275626],
                 [0.555484, 0.840254, 0.269281],
                 [0.565498, 0.842430, 0.262877],
                 [0.575563, 0.844566, 0.256415],
                 [0.585678, 0.846661, 0.249897],
                 [0.595839, 0.848717, 0.243329],
                 [0.606045, 0.850733, 0.236712],
                 [0.616293, 0.852709, 0.230052],
                 [0.626579, 0.854645, 0.223353],
                 [0.636902, 0.856542, 0.216620],
                 [0.647257, 0.858400, 0.209861],
                 [0.657642, 0.860219, 0.203082],
                 [0.668054, 0.861999, 0.196293],
                 [0.678489, 0.863742, 0.189503],
                 [0.688944, 0.865448, 0.182725],
                 [0.699415, 0.867117, 0.175971],
                 [0.709898, 0.868751, 0.169257],
                 [0.720391, 0.870350, 0.162603],
                 [0.730889, 0.871916, 0.156029],
                 [0.741388, 0.873449, 0.149561],
                 [0.751884, 0.874951, 0.143228],
                 [0.762373, 0.876424, 0.137064],
                 [0.772852, 0.877868, 0.131109],
                 [0.783315, 0.879285, 0.125405],
                 [0.793760, 0.880678, 0.120005],
                 [0.804182, 0.882046, 0.114965],
                 [0.814576, 0.883393, 0.110347],
                 [0.824940, 0.884720, 0.106217],
                 [0.835270, 0.886029, 0.102646],
                 [0.845561, 0.887322, 0.099702],
                 [0.855810, 0.888601, 0.097452],
                 [0.866013, 0.889868, 0.095953],
                 [0.876168, 0.891125, 0.095250],
                 [0.886271, 0.892374, 0.095374],
                 [0.896320, 0.893616, 0.096335],
                 [0.906311, 0.894855, 0.098125],
                 [0.916242, 0.896091, 0.100717],
                 [0.926106, 0.897330, 0.104071],
                 [0.935904, 0.898570, 0.108131],
                 [0.945636, 0.899815, 0.112838],
                 [0.955300, 0.901065, 0.118128],
                 [0.964894, 0.902323, 0.123941],
                 [0.974417, 0.903590, 0.130215],
                 [0.983868, 0.904867, 0.136897],
                 [0.993248, 0.906157, 0.143936]]


_colormaps = dict(
    # Some colormap presets
    autumn=Colormap([(1., 0., 0., 1.), (1., 1., 0., 1.)]),
    blues=Colormap([(1., 1., 1., 1.), (0., 0., 1., 1.)]),
    cool=Colormap([(0., 1., 1., 1.), (1., 0., 1., 1.)]),
    greens=Colormap([(1., 1., 1., 1.), (0., 1., 0., 1.)]),
    reds=Colormap([(1., 1., 1., 1.), (1., 0., 0., 1.)]),
    spring=Colormap([(1., 0., 1., 1.), (1., 1., 0., 1.)]),
    summer=Colormap([(0., .5, .4, 1.), (1., 1., .4, 1.)]),
    fire=_Fire(),
    grays=_Grays(),
    hot=_Hot(),
    ice=_Ice(),
    winter=_Winter(),
    light_blues=SingleHue(),
    orange=SingleHue(hue=35),
    viridis=Colormap(ColorArray(_viridis_data)),
    # Diverging presets
    coolwarm=Colormap(ColorArray(
        [
            (226, 0.59, 0.92), (222, 0.44, 0.99), (218, 0.26, 0.97),
            (30, 0.01, 0.87),
            (20, 0.3, 0.96), (15, 0.5, 0.95), (8, 0.66, 0.86)
        ],
        color_space="hsv"
    )),
    PuGr=Diverging(145, 280, 0.85, 0.30),
    GrBu=Diverging(255, 133, 0.75, 0.6),
    GrBu_d=Diverging(255, 133, 0.75, 0.6, "dark"),
    RdBu=Diverging(220, 20, 0.75, 0.5),

    cubehelix=CubeHelixColormap(),
    single_hue=SingleHue(),
    hsl=HSL(),
    husl=HSLuv(),
    diverging=Diverging(),
    RdYeBuCy=RedYellowBlueCyan(),
    HiLo=_HiLo(),
)


def get_colormap(name):
    """Obtain a colormap by name.

    Parameters
    ----------
    name : str | Colormap
        Colormap name. Can also be a Colormap for pass-through.

    Examples
    --------
    >>> get_colormap('autumn')
    >>> get_colormap('single_hue')

    .. versionchanged: 0.7

        Additional args/kwargs are no longer accepted. Colormap instances are
        no longer created on the fly.

    """
    if isinstance(name, BaseColormap):
        return name

    if not isinstance(name, str):
        raise TypeError('colormap must be a Colormap or string name')
    if name in _colormaps:  # vispy cmap
        cmap = _colormaps[name]

    elif has_matplotlib():  # matplotlib cmap
        try:
            cmap = MatplotlibColormap(name)
        except ValueError:
            raise KeyError('colormap name %s not found' % name)
    else:
        raise KeyError('colormap name %s not found' % name)
    return cmap


def get_colormaps():
    """Return the list of colormap names."""
    return _colormaps.copy()