1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# glumpy is an OpenGL framework for the fast visualization of numpy arrays.
# Copyright (C) 2009-2011 Nicolas P. Rougier. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY NICOLAS P. ROUGIER ''AS IS'' AND ANY EXPRESS OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
# MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
# EVENT SHALL NICOLAS P. ROUGIER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
# INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
# THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# The views and conclusions contained in the software and documentation are
# those of the authors and should not be interpreted as representing official
# policies, either expressed or implied, of Nicolas P. Rougier.
# -----------------------------------------------------------------------------
"""
A filter is a shader that transform the current displayed texture. Since
shaders cannot be easily serialized within the GPU, they have to be well
structured on the python side such that we can possibly merge them into a
single source code for both vertex and fragment. Consequently, there is a
default code for both vertex and fragment with specific entry points such that
filter knows where to insert their specific code (declarations, functions and
call (or code) to be inserted in the main function).
Spatial interpolation filter classes for OpenGL textures.
Each filter generates a one-dimensional lookup table (weights value from 0 to
ceil(radius)) that is uploaded to video memory (as a 1d texture) and is then
read by the shader when necessary. It avoids computing weight values for each
pixel. Furthemore, each 2D-convolution filter is separable and can be computed
using 2 1D-convolution with same 1d-kernel (= the lookup table values).
Available filters:
- Nearest (radius 0.5)
- Linear (radius 1)
- Hanning (radius 1)
- Hamming (radius 1)
- Hermite (radius 1)
- Kaiser (radius 1)
- Quadric (radius 1.5)
- Cubic (radius 2)
- CatRom (radius 2)
- Mitchell (radius 2)
- Spline16 (radius 2)
- Spline36 (radius 4)
- Gaussian (radius 2)
- Bessel (radius 3.2383)
- Sinc (radius 4)
- Lanczos (radius 4)
- Blackman (radius 4)
Note::
Weights code has been translated from the antigrain geometry library
available at http://www.antigrain.com/
"""
import math
import numpy as np
from inspect import cleandoc
from itertools import product
class SpatialFilter:
def __init__(self, radius=1):
self.radius = math.ceil(radius)
def weight(self, x):
"""
Return filter weight for a distance x.
:Parameters:
``x`` : 0 < float < ceil(self.radius)
Distance to be used to compute weight.
"""
raise NotImplementedError
def kernel(self, size=4 * 512):
samples = int(size / self.radius)
n = size # r*samples
kernel = np.zeros(n)
X = np.linspace(0, self.radius, n)
for i in range(n):
kernel[i] = self.weight(X[i])
N = np.zeros(samples)
for i in range(self.radius):
N += kernel[::+1][i * samples:(i + 1) * samples]
N += kernel[::-1][i * samples:(i + 1) * samples]
for i in range(self.radius):
kernel[i * samples:(i + 1) * samples] /= N
return kernel
def call_code(self, index):
code = cleandoc(f'''
vec4 {self.__class__.__name__}2D(sampler2D texture, vec2 shape, vec2 uv) {{
return filter2D_radius{self.radius}(texture, u_kernel, {index}, uv, 1 / shape);
}}
vec4 {self.__class__.__name__}3D(sampler3D texture, vec3 shape, vec3 uv) {{
return filter3D_radius{self.radius}(texture, u_kernel, {index}, uv, 1 / shape);
}}
''')
return code
class Linear(SpatialFilter):
"""
Linear filter (radius = 1).
Weight function::
w(x) = 1 - x
"""
def weight(self, x):
return 1 - x
class Hanning(SpatialFilter):
"""
Hanning filter (radius = 1).
Weight function::
w(x) = 0.5 + 0.5 * cos(pi * x)
"""
def weight(self, x):
return 0.5 + 0.5 * math.cos(math.pi * x)
class Hamming(SpatialFilter):
"""
Hamming filter (radius = 1).
Weight function::
w(x) = 0.54 + 0.46 * cos(pi * x)
"""
def weight(self, x):
return 0.54 + 0.46 * math.cos(math.pi * x)
class Hermite(SpatialFilter):
"""Hermite filter (radius = 1).
Weight function::
w(x) = (2*x-3)*x^2 + 1
"""
def weight(self, x):
return (2 * x - 3) * x**2 + 1
class Quadric(SpatialFilter):
"""
Quadric filter (radius = 1.5).
Weight function::
| 0 ≤ x < 0.5: 0.75 - x*x
w(x) = | 0.5 ≤ x < 1.5: 0.5 - (x-1.5)^2
| 1.5 ≤ x : 0
"""
def __init__(self):
super().__init__(radius=1.5)
def weight(self, x):
if x < 0.75:
return 0.75 - x**2
elif x < 1.5:
t = x - 1.5
return 0.5 * t**2
return 0
class Cubic(SpatialFilter):
"""
Cubic filter (radius = 2).
Weight function::
w(x) = 1/6((x+2)^3 - 4*(x+1)^3 + 6*x^3 -4*(x-1)^3)
"""
def __init__(self):
super().__init__(radius=2)
def weight(self, x):
return (1 / 6) * (
(x + 2)**3
- 4 * (x + 1)**3
+ 6 * x**3
- 4 * (x - 1)**3
)
class Kaiser(SpatialFilter):
"""
Kaiser filter (radius = 1).
Weight function::
w(x) = bessel_i0(a sqrt(1-x^2)* 1/bessel_i0(b)
"""
def __init__(self, b=6.33):
self.a = b
self.epsilon = 1e-12
self.i0a = 1 / self.bessel_i0(b)
super().__init__(radius=1)
def bessel_i0(self, x):
s = 1
y = x**2 / 4
t = y
i = 2
while t > self.epsilon:
s += t
t *= float(y) / i**2
i += 1
return s
def weight(self, x):
if x > 1:
return 0
return self.bessel_i0(self.a * math.sqrt(1 - x**2)) * self.i0a
class CatRom(SpatialFilter):
"""
Catmull-Rom filter (radius = 2).
Weight function::
| 0 ≤ x < 1: 0.5*(2 + x^2*(-5+x*3))
w(x) = | 1 ≤ x < 2: 0.5*(4 + x*(-8+x*(5-x)))
| 2 ≤ x : 0
"""
def __init__(self):
super().__init__(radius=2)
def weight(self, x):
if x < 1:
return 0.5 * (2 + x**2 * (-5 + x * 3))
elif x < 2:
return 0.5 * (4 + x * (-8 + x * (5 - x)))
else:
return 0
class Mitchell(SpatialFilter):
"""
Mitchell-Netravali filter (radius = 2).
Weight function::
| 0 ≤ x < 1: p0 + x^2*(p2 + x*p3)
w(x) = | 1 ≤ x < 2: q0 + x*(q1 + x*(q2 + x*q3))
| 2 ≤ x : 0
"""
def __init__(self, b=1/3, c=1/3):
self.p0 = (6 - 2 * b) / 6
self.p2 = (-18 + 12 * b + 6 * c) / 6
self.p3 = (12 - 9 * b - 6 * c) / 6
self.q0 = (8 * b + 24 * c) / 6
self.q1 = (-12 * b - 48 * c) / 6
self.q2 = (6 * b + 30 * c) / 6
self.q3 = (-b - 6 * c) / 6
super().__init__(radius=2)
def weight(self, x):
if x < 1:
return self.p0 + x**2 * (self.p2 + x * self.p3)
elif x < 2:
return self.q0 + x * (self.q1 + x * (self.q2 + x * self.q3))
else:
return 0
class Spline16(SpatialFilter):
"""
Spline16 filter (radius = 2).
Weight function::
| 0 ≤ x < 1: ((x-9/5)*x - 1/5)*x + 1
w(x) = |
| 1 ≤ x < 2: ((-1/3*(x-1) + 4/5)*(x-1) - 7/15 )*(x-1)
"""
def __init__(self):
super().__init__(radius=2)
def weight(self, x):
if x < 1:
return ((x - 9/5) * x - 1/5) * x + 1
else:
return ((-1/3 * (x - 1) + 4/5) * (x - 1) - 7/15) * (x - 1)
class Spline36(SpatialFilter):
"""
Spline36 filter (radius = 3).
Weight function::
| 0 ≤ x < 1: ((13/11*x - 453/209)*x -3/209)*x +1
w(x) = | 1 ≤ x < 2: ((-6/11*(x-1) - 270/209)*(x-1) -156/209)*(x-1)
| 2 ≤ x < 3: (( 1/11*(x-2) - 45/209)*(x-2) + 26/209)*(x-2)
"""
def __init__(self):
super().__init__(radius=3)
def weight(self, x):
if x < 1:
return ((13/11 * x - 453/209) * x - 3/209) * x + 1
elif x < 2:
return ((-6/11 * (x - 1) + 270/209) * (x - 1) - 156 / 209) * (x - 1)
else:
return ((1/11 * (x - 2) - 45/209) * (x - 2) + 26/209) * (x - 2)
class Gaussian(SpatialFilter):
"""
Gaussian filter (radius = 2).
Weight function::
w(x) = exp(-2x^2) * sqrt(2/pi)
Note::
This filter does not seem to be correct since:
x = np.linspace(0, 1, 100 )
f = weight
z = f(x+1)+f(x)+f(1-x)+f(2-x)
z should be 1 everywhere but it is not the case and it produces "grid
effects".
"""
def __init__(self):
super().__init__(radius=2)
def weight(self, x):
return math.exp(-2 * x**2) * math.sqrt(2 / math.pi)
class Bessel(SpatialFilter):
"""Bessel filter (radius = 3.2383)."""
def __init__(self):
super().__init__(radius=3.2383)
def besj(self, x, n):
"""Function BESJ calculates Bessel function of first kind of order n.
Parameters
----------
x: int
value at which the Bessel function is required
n : int
an integer (>=0), the order
Notes
-----
C++ Mathematical Library
Converted from equivalent FORTRAN library
Converted by Gareth Walker for use by course 392 computational project
All functions tested and yield the same results as the corresponding
FORTRAN versions.
If you have any problems using these functions please report them to
M.Muldoon@UMIST.ac.uk
Documentation available on the web
http://www.ma.umist.ac.uk/mrm/Teaching/392/libs/392.html
Version 1.0 8/98
29 October, 1999
Adapted for use in AGG library by
Andy Wilk (castor.vulgaris@gmail.com)
Adapted for use in vispy library by
Nicolas P. Rougier (Nicolas.Rougier@inria.fr)
"""
if n < 0:
return 0
x = float(x) # force float type
d = 1e-6
b = 0
if math.fabs(x) <= d:
if n != 0:
return 0
return 1
b1 = 0 # b1 is the value from the previous iteration
# Set up a starting order for recurrence
m1 = int(math.fabs(x)) + 6
if math.fabs(x) > 5:
m1 = int(math.fabs(1.4 * x + 60 / x))
m2 = int(n + 2 + math.fabs(x) / 4)
if m1 > m2:
m2 = m1
# Apply recurrence down from current max order
while True:
c3 = 0
c2 = 1e-30
c4 = 0
m8 = 1
if m2 // 2 * 2 == m2:
m8 = -1
imax = m2 - 2
for i in range(1, imax + 1):
c6 = 2 * (m2 - i) * c2 / x - c3
c3 = c2
c2 = c6
if m2 - i - 1 == n:
b = c6
m8 = -1 * m8
if m8 > 0:
c4 = c4 + 2 * c6
c6 = 2 * c2 / x - c3
if n == 0:
b = c6
c4 += c6
b /= c4
if math.fabs(b - b1) < d:
return b
b1 = b
m2 += 3
def weight(self, x):
if x == 0:
return math.pi / 4
else:
return self.besj(math.pi * x, 1) / (2 * x)
class Sinc(SpatialFilter):
"""Sinc filter (radius = 4)."""
def __init__(self):
super().__init__(radius=4)
def weight(self, x):
if x == 0:
return 1
x *= math.pi
return (math.sin(x) / x)
class Lanczos(SpatialFilter):
"""Lanczos filter (radius = 4)."""
def __init__(self):
super().__init__(radius=4)
def weight(self, x):
if x == 0:
return 1
elif x > self.radius:
return 0
x *= math.pi
xr = x / self.radius
return (math.sin(x) / x) * (math.sin(xr) / xr)
class Blackman(SpatialFilter):
"""Blackman filter (radius = 4)."""
def __init__(self):
super().__init__(radius=4)
def weight(self, x):
if x == 0:
return 1
elif x > self.radius:
return 0
x *= math.pi
xr = x / self.radius
return (math.sin(x) / x) * (0.42 + 0.5 * math.cos(xr) + 0.08 * math.cos(2 * xr))
def generate_filter_code(radius):
n = int(math.ceil(radius))
nl = '\n' # cannot use backslash in fstring
code = cleandoc(f'''
vec4 filter1D_radius{n}(sampler2D kernel, float index, float x{''.join(f', vec4 c{i}' for i in range(n * 2))}) {{
float w, w_sum = 0;
vec4 r = vec4(0);
{''.join(f"""
w = unpack_interpolate(kernel, vec2({1 - (i + 1) / n} + (x / {n}), index));
w = w * kernel_scale + kernel_bias;
r += c{i} * w;
w = unpack_interpolate(kernel, vec2({(i + 1) / n} - (x / {n}), index));
w = w * kernel_scale + kernel_bias;
r += c{i + n} * w;"""
for i in range(n))}
return r;
}}
vec4 filter2D_radius{n}(sampler2D texture, sampler2D kernel, float index, vec2 uv, vec2 pixel) {{
vec2 texel = uv / pixel - vec2(0.5);
vec2 f = fract(texel);
texel = (texel - fract(texel) + vec2(0.001)) * pixel;
{''.join(f"""
vec4 t{i} = filter1D_radius{n}(kernel, index, f.x{f''.join(
f',{nl} texture2D(texture, texel + vec2({-n + 1 + j}, {-n + 1 + i}) * pixel)'
for j in range(n * 2))});"""
for i in range(n * 2))}
return filter1D_radius{n}(kernel, index, f.y{''.join(f', t{i}' for i in range(2*n))});
}}
vec4 filter3D_radius{n}(sampler3D texture, sampler2D kernel, float index, vec3 uv, vec3 pixel) {{
vec3 texel = uv / pixel - vec3(0.5);
vec3 f = fract(texel);
texel = (texel - fract(texel) + vec3(0.001)) * pixel;
{''.join(f"""
vec4 t{i}{j} = filter1D_radius{n}(kernel, index, f.x{f''.join(
f',{nl} texture3D(texture, texel + vec3({-n + 1 + k}, {-n + 1 + j}, {-n + 1 + i}) * pixel)'
for k in range(n * 2))});"""
for i, j in product(range(n * 2), range(n * 2)))}
{f''.join(f"""
vec4 t{i} = filter1D_radius{n}(kernel, index, f.y{"".join(
f", t{i}{j}" for j in range(n * 2))});"""
for i in range(n * 2))}
return filter1D_radius{n}(kernel, index, f.z{''.join(f', t{i}' for i in range(2*n))});
}}
''')
return code
def main():
# Generate kernels texture (16 x 1024)
filters = [Linear(), Hanning(), Hamming(), Hermite(), Kaiser(), Quadric(),
Cubic(), CatRom(), Mitchell(), Spline16(), Spline36(), Gaussian(),
Bessel(), Sinc(), Lanczos(), Blackman()]
n = 1024
K = np.zeros((len(filters), n))
for i, f in enumerate(filters):
K[i] = f.kernel(n)
bias = K.min()
scale = K.max() - K.min()
K = (K - bias) / scale
np.save("spatial-filters.npy", K.astype(np.float32))
code = cleandoc(f'''
// ------------------------------------
// Automatically generated, do not edit
// ------------------------------------
const float kernel_bias = {bias};
const float kernel_scale = {scale};
const float kernel_size = {n};
const vec4 bits = vec4(1, {1 / 256}, {1 / (256 * 256)}, {1 / (256 * 256 * 256)});
uniform sampler2D u_kernel;
''')
# add basic unpack functions
code += '\n\n' + cleandoc('''
float unpack_unit(vec4 rgba) {
// return rgba.r; // uncomment this for r32f debugging
return dot(rgba, bits);
}
float unpack_ieee(vec4 rgba) {
// return rgba.r; // uncomment this for r32f debugging
rgba.rgba = rgba.abgr * 255;
float sign = 1 - step(128 , rgba[0]) * 2;
float exponent = 2 * mod(rgba[0] , 128) + step(128 , rgba[1]) - 127;
float mantissa = mod(rgba[1] , 128) * 65536 + rgba[2] * 256 + rgba[3] + float(0x800000);
return sign * exp2(exponent) * (mantissa * exp2(-23.));
}
float unpack_interpolate(sampler2D kernel, vec2 uv) {
// return texture2D(kernel, uv).r; //uncomment this for r32f debug without interpolation
float kpixel = 1. / kernel_size;
float u = uv.x / kpixel;
float v = uv.y;
float uf = fract(u);
u = (u - uf) * kpixel;
float d0 = unpack_unit(texture2D(kernel, vec2(u, v)));
float d1 = unpack_unit(texture2D(kernel, vec2(u + 1. * kpixel, v)));
return mix(d0, d1, uf);
}
''')
# add 1d, 2d and 3d filter code
for radius in range(4):
code += '\n\n' + generate_filter_code(radius + 1)
# add call functions for 2D and 3D filters
# special case for nearest
code += '\n\n' + cleandoc('''
vec4 Nearest2D(sampler2D texture, vec2 shape, vec2 uv) {
return texture2D(texture, uv);
}
vec4 Nearest3D(sampler3D texture, vec3 shape, vec3 uv) {
return texture3D(texture, uv);
}
''')
for i, f in enumerate(filters):
code += '\n\n' + f.call_code((i + 0.5) / 16)
print(code)
if __name__ == "__main__":
import sys
sys.exit(main())
|