File: agg.vert

package info (click to toggle)
python-vispy 0.15.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,868 kB
  • sloc: python: 59,799; javascript: 6,800; makefile: 69; sh: 6
file content (241 lines) | stat: -rw-r--r-- 7,620 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
const float THETA = 15.0 * 3.14159265358979323846264/180.0;

// Cross product of v1 and v2
float cross(in vec2 v1, in vec2 v2) {
    return v1.x*v2.y - v1.y*v2.x;
}

// Returns distance of v3 to line v1-v2
float signed_distance(in vec2 v1, in vec2 v2, in vec2 v3) {
    return cross(v2-v1,v1-v3) / length(v2-v1);
}

// Rotate v around origin
void rotate( in vec2 v, in float alpha, out vec2 result ) {
    float c = cos(alpha);
    float s = sin(alpha);
    result = vec2( c*v.x - s*v.y,
                   s*v.x + c*v.y );
}

vec2 transform_vector(vec2 x, vec2 base) {
    vec4 o = $transform(vec4(base, 0, 1));
    return ($transform(vec4(base+x, 0, 1)) - o).xy;
}


// Uniforms
//uniform mat4 u_matrix;
//uniform mat4 u_view;

attribute vec4 color;
// uniform vec2 u_scale;
// uniform vec2 tr_scale;
uniform float linewidth;
uniform float antialias;
uniform vec2 linecaps;
uniform float linejoin;
uniform float miter_limit;
attribute float alength;
uniform float dash_phase;
uniform float dash_period;
uniform float dash_index;
uniform vec2 dash_caps;
uniform float closed;


// Attributes
attribute vec2 a_position; // position of each vertex
attribute vec4 a_tangents; // vector pointing from one vertex to the next
attribute vec2 a_segment;  // distance along path
attribute vec2 a_angles;
attribute vec2 a_texcoord;

// Varying
varying vec4  v_color;
varying vec2  v_segment;
varying vec2  v_angles;
varying vec2  v_linecaps;
varying vec2  v_texcoord;
varying vec2  v_miter;
varying float v_miter_limit;
varying float v_length;
varying float v_linejoin;
varying float v_linewidth;
varying float v_antialias;
varying float v_dash_phase;
varying float v_dash_period;
varying float v_dash_index;
varying vec2  v_dash_caps;
varying float v_closed;
void main()
{
    v_color = color;

    v_linewidth = linewidth;
    v_antialias = antialias;
    v_linecaps  = linecaps;

    v_linejoin    = linejoin;
    v_miter_limit = miter_limit;
    v_length      = alength;
    v_dash_phase  = dash_phase;

    v_dash_period = dash_period;
    v_dash_index  = dash_index;
    v_dash_caps   = dash_caps;

    v_closed = closed;
    bool closed = (v_closed > 0.0);

    // Attributes to varyings
    v_angles  = a_angles;
    //v_segment = a_segment * u_scale.x * tr_scale.x;  // TODO: proper scaling
    //v_length  = v_length * u_scale * tr_scale;  // TODO: proper scaling
    v_segment = a_segment;

    // Thickness below 1 pixel are represented using a 1 pixel thickness
    // and a modified alpha
    v_color.a = min(v_linewidth, v_color.a);
    v_linewidth = max(v_linewidth, 1.0);

    // This is the actual half width of the line
    // TODO: take care of logical - physical pixel difference here.
    float w = ceil(1.25*v_antialias+v_linewidth)/2.0;

    vec4 doc_pos = $transform(vec4(a_position,0.,1.));
    //vec2 position = doc_pos.xy * u_scale;
    vec2 position = doc_pos.xy;
    // At this point, position must be in _doc_ coordinates because the line
    // width will be added to it.

    //vec2 t1 = normalize(tr_scale*a_tangents.xy);
    //vec2 t2 = normalize(tr_scale*a_tangents.zw);
    vec2 t1 = normalize(transform_vector(a_tangents.xy, a_position));
    vec2 t2 = normalize(transform_vector(a_tangents.zw, a_position));
    float u = a_texcoord.x;
    float v = a_texcoord.y;
    vec2 o1 = vec2( +t1.y, -t1.x);
    vec2 o2 = vec2( +t2.y, -t2.x);


    // This is a join
    // ----------------------------------------------------------------
    if( t1 != t2 ) {
        float angle  = atan (t1.x*t2.y-t1.y*t2.x, t1.x*t2.x+t1.y*t2.y);
        vec2 t  = normalize(t1+t2);
        vec2 o  = vec2( + t.y, - t.x);

        if ( v_dash_index > 0.0 )
        {
            // Broken angle
            // ----------------------------------------------------------------
            if( (abs(angle) > THETA) ) {
                position += v * w * o / cos(angle/2.0);
                float s = sign(angle);
                if( angle < 0.0 ) {
                    if( u == +1.0 ) {
                        u = v_segment.y + v * w * tan(angle/2.0);
                        if( v == 1.0 ) {
                            position -= 2.0 * w * t1 / sin(angle);
                            u -= 2.0 * w / sin(angle);
                        }
                    } else {
                        u = v_segment.x - v * w * tan(angle/2.0);
                        if( v == 1.0 ) {
                            position += 2.0 * w * t2 / sin(angle);
                            u += 2.0*w / sin(angle);
                        }
                    }
                } else {
                    if( u == +1.0 ) {
                        u = v_segment.y + v * w * tan(angle/2.0);
                        if( v == -1.0 ) {
                            position += 2.0 * w * t1 / sin(angle);
                            u += 2.0 * w / sin(angle);
                        }
                    } else {
                        u = v_segment.x - v * w * tan(angle/2.0);
                        if( v == -1.0 ) {
                            position -= 2.0 * w * t2 / sin(angle);
                            u -= 2.0*w / sin(angle);
                        }
                    }
                }
                // Continuous angle
                // ------------------------------------------------------------
            } else {
                position += v * w * o / cos(angle/2.0);
                if( u == +1.0 ) u = v_segment.y;
                else            u = v_segment.x;
            }
        }

        // Solid line
        // --------------------------------------------------------------------
        else
        {
            position.xy += v * w * o / cos(angle/2.0);
            if( angle < 0.0 ) {
                if( u == +1.0 ) {
                    u = v_segment.y + v * w * tan(angle/2.0);
                } else {
                    u = v_segment.x - v * w * tan(angle/2.0);
                }
            } else {
                if( u == +1.0 ) {
                    u = v_segment.y + v * w * tan(angle/2.0);
                } else {
                    u = v_segment.x - v * w * tan(angle/2.0);
                }
            }
        }

    // This is a line start or end (t1 == t2)
    // ------------------------------------------------------------------------
    } else {
        position += v * w * o1;
        if( u == -1.0 ) {
            u = v_segment.x - w;
            position -=  w * t1;
        } else {
            u = v_segment.y + w;
            position +=  w * t2;
        }
    }

    // Miter distance
    // ------------------------------------------------------------------------
    vec2 t;
    //vec2 curr = $transform(vec4(a_position,0.,1.)).xy*u_scale;
    vec2 curr = $transform(vec4(a_position,0.,1.)).xy;
    if( a_texcoord.x < 0.0 ) {
        vec2 next = curr + t2*(v_segment.y-v_segment.x);

        rotate( t1, +a_angles.x/2.0, t);
        v_miter.x = signed_distance(curr, curr+t, position);

        rotate( t2, +a_angles.y/2.0, t);
        v_miter.y = signed_distance(next, next+t, position);
    } else {
        vec2 prev = curr - t1*(v_segment.y-v_segment.x);

        rotate( t1, -a_angles.x/2.0,t);
        v_miter.x = signed_distance(prev, prev+t, position);

        rotate( t2, -a_angles.y/2.0,t);
        v_miter.y = signed_distance(curr, curr+t, position);
    }

    if (!closed && v_segment.x <= 0.0) {
        v_miter.x = 1e10;
    }
    if (!closed && v_segment.y >= v_length)
    {
        v_miter.y = 1e10;
    }

    v_texcoord = vec2( u, v*w );

    gl_Position = $px_ndc_transform($doc_px_transform(vec4(position, doc_pos.z, 1.0)));
}