1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Very simple transformation library that is needed for some examples."""
from __future__ import division
# Note: we use functions (e.g. sin) from math module because they're faster
import math
import numpy as np
def translate(offset, dtype=None):
"""Translate by an offset (x, y, z) .
Parameters
----------
offset : array-like, shape (3,)
Translation in x, y, z.
dtype : dtype | None
Output type (if None, don't cast).
Returns
-------
M : ndarray
Transformation matrix describing the translation.
"""
assert len(offset) == 3
x, y, z = offset
M = np.array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[x, y, z, 1.0]], dtype)
return M
def scale(s, dtype=None):
"""Non-uniform scaling along the x, y, and z axes
Parameters
----------
s : array-like, shape (3,)
Scaling in x, y, z.
dtype : dtype | None
Output type (if None, don't cast).
Returns
-------
M : ndarray
Transformation matrix describing the scaling.
"""
assert len(s) == 3
return np.array(np.diag(np.concatenate([s, (1.,)])), dtype)
def rotate(angle, axis, dtype=None):
"""The 4x4 rotation matrix for rotation about a vector.
Parameters
----------
angle : float
The angle of rotation, in degrees.
axis : ndarray
The x, y, z coordinates of the axis direction vector.
Returns
-------
M : ndarray
Transformation matrix describing the rotation.
"""
angle = np.radians(angle)
assert len(axis) == 3
x, y, z = axis / np.linalg.norm(axis)
c, s = math.cos(angle), math.sin(angle)
cx, cy, cz = (1 - c) * x, (1 - c) * y, (1 - c) * z
M = np.array([[cx * x + c, cy * x - z * s, cz * x + y * s, .0],
[cx * y + z * s, cy * y + c, cz * y - x * s, 0.],
[cx * z - y * s, cy * z + x * s, cz * z + c, 0.],
[0., 0., 0., 1.]], dtype).T
return M
def ortho(left, right, bottom, top, znear, zfar):
"""Create orthographic projection matrix
Parameters
----------
left : float
Left coordinate of the field of view.
right : float
Right coordinate of the field of view.
bottom : float
Bottom coordinate of the field of view.
top : float
Top coordinate of the field of view.
znear : float
Near coordinate of the field of view.
zfar : float
Far coordinate of the field of view.
Returns
-------
M : ndarray
Orthographic projection matrix (4x4).
"""
assert(right != left)
assert(bottom != top)
assert(znear != zfar)
M = np.zeros((4, 4), dtype=np.float32)
M[0, 0] = +2.0 / (right - left)
M[3, 0] = -(right + left) / float(right - left)
M[1, 1] = +2.0 / (top - bottom)
M[3, 1] = -(top + bottom) / float(top - bottom)
M[2, 2] = -2.0 / (zfar - znear)
M[3, 2] = -(zfar + znear) / float(zfar - znear)
M[3, 3] = 1.0
return M
def frustum(left, right, bottom, top, znear, zfar):
"""Create view frustum
Parameters
----------
left : float
Left coordinate of the field of view.
right : float
Right coordinate of the field of view.
bottom : float
Bottom coordinate of the field of view.
top : float
Top coordinate of the field of view.
znear : float
Near coordinate of the field of view.
zfar : float
Far coordinate of the field of view.
Returns
-------
M : ndarray
View frustum matrix (4x4).
"""
assert(right != left)
assert(bottom != top)
assert(znear != zfar)
M = np.zeros((4, 4), dtype=np.float32)
M[0, 0] = +2.0 * znear / float(right - left)
M[2, 0] = (right + left) / float(right - left)
M[1, 1] = +2.0 * znear / float(top - bottom)
M[2, 1] = (top + bottom) / float(top - bottom)
M[2, 2] = -(zfar + znear) / float(zfar - znear)
M[3, 2] = -2.0 * znear * zfar / float(zfar - znear)
M[2, 3] = -1.0
return M
def perspective(fovy, aspect, znear, zfar):
"""Create perspective projection matrix
Parameters
----------
fovy : float
The field of view along the y axis.
aspect : float
Aspect ratio of the view.
znear : float
Near coordinate of the field of view.
zfar : float
Far coordinate of the field of view.
Returns
-------
M : ndarray
Perspective projection matrix (4x4).
"""
assert(znear != zfar)
h = math.tan(fovy / 360.0 * math.pi) * znear
w = h * aspect
return frustum(-w, w, -h, h, znear, zfar)
def affine_map(points1, points2):
"""Find a 3D transformation matrix that maps points1 onto points2.
Arguments are specified as arrays of four 3D coordinates, shape (4, 3).
"""
A = np.ones((4, 4))
A[:, :3] = points1
B = np.ones((4, 4))
B[:, :3] = points2
# solve 3 sets of linear equations to determine
# transformation matrix elements
matrix = np.eye(4)
for i in range(3):
# solve Ax = B; x is one row of the desired transformation matrix
matrix[i] = np.linalg.solve(A, B[:, i])
return matrix
|