File: networkx_layout.py

package info (click to toggle)
python-vispy 0.15.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,868 kB
  • sloc: python: 59,799; javascript: 6,800; makefile: 69; sh: 6
file content (87 lines) | stat: -rw-r--r-- 3,583 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# -*- coding: utf-8 -*-
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.#!/usr/bin/env python3
from ..util import _straight_line_vertices, issparse
import numpy as np
try:
    import networkx as nx
except ModuleNotFoundError:
    nx = None


class NetworkxCoordinates:
    def __init__(self, graph=None, layout=None, **kwargs):
        """
        Converts :graph: into a layout. Can be used in conjunction with networkx layouts or using raw 2D-numpy arrays.

        Parameters
        ----------
        graph : a networkx graph.
        layout : str or dict or iterable-object of float32, optional
        - When :layout: is s string, a lookup will be performed in the networkx avaiable layouts.
        - When :layout: is a dict, it will be assumed that it takes the shape (key, value) = (node_id, 2D-coordinate).
        - When :layout: is numpy array it is assumed it takes the shape (number_of_nodes, 2).
        kwargs: dict, optional
        when layout is :str: :kwargs: will act as a setting dictionary for the layout function of networkx
        """
        if nx is None:
            raise ValueError("networkx not found, please install networkx to use its layouts")
        if isinstance(graph, type(None)):
            raise ValueError("Requires networkx input")
        self.graph = graph
        self.positions = np.zeros((len(graph), 2), dtype=np.float32)
        # default random positions
        if isinstance(layout, type(None)):
            self.positions = np.random.rand(*self.positions.shape)

        # check for networkx
        elif isinstance(layout, str):
            if not layout.endswith("_layout"):
                layout += "_layout"  # append for nx
            layout_function = getattr(nx, layout)
            if layout_function:
                self.positions = np.asarray(
                    [i for i in dict(layout_function(graph, **kwargs)).values()])
            else:
                raise ValueError("Check networkx for layouts")
        # assume dict from networkx; values are 2-array
        elif isinstance(layout, dict):
            self.positions = np.asarray([i for i in layout.values()])

        # assume given values
        elif isinstance(layout, np.ndarray):
            assert layout.ndim == 2
            assert layout.shape[0] == len(graph)
            self.positions = layout
        else:
            raise ValueError("Input not understood")

        # normalize coordinates
        self.positions = (self.positions - self.positions.min()) / \
            (self.positions.max() - self.positions.min())
        self.positions = self.positions.astype(np.float32)

    def __call__(self, adjacency_mat, directed=False):
        """
        Parameters
        ----------
        adjacency_mat : sparse adjacency matrix.
        directed : bool, default False

        Returns
        ---------
        (node_vertices, line_vertices, arrow_vertices) : tuple
        Yields the node and line vertices in a tuple. This layout only yields a
        single time, and has no builtin animation
        """
        if issparse(adjacency_mat):
            adjacency_mat = adjacency_mat.tocoo()
        line_vertices, arrows = _straight_line_vertices(
            adjacency_mat, self.positions, directed)

        yield self.positions, line_vertices, arrows

    @property
    def adj(self):
        """Convenient storage and holder of the adjacency matrix for the :scene.visuals.Graph: function."""
        return nx.adjacency_matrix(self.graph)