File: image.py

package info (click to toggle)
python-vispy 0.15.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,868 kB
  • sloc: python: 59,799; javascript: 6,800; makefile: 69; sh: 6
file content (701 lines) | stat: -rw-r--r-- 27,024 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
# -*- coding: utf-8 -*-
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
"""Primitive 2D image visual class."""

from __future__ import division

import warnings

import numpy as np

from ..gloo import Texture2D, VertexBuffer
from ..color import get_colormap
from .shaders import Function, FunctionChain
from .transforms import NullTransform
from .visual import Visual
from ..io import load_spatial_filters
from ._scalable_textures import CPUScaledTexture2D, GPUScaledTexture2D
from ..util import np_copy_if_needed


_VERTEX_SHADER = """
uniform int method;  // 0=subdivide, 1=impostor
attribute vec2 a_position;
attribute vec2 a_texcoord;
varying vec2 v_texcoord;

void main() {
    v_texcoord = a_texcoord;
    gl_Position = $transform(vec4(a_position, 0., 1.));
}
"""

_FRAGMENT_SHADER = """
uniform vec2 image_size;
uniform int method;  // 0=subdivide, 1=impostor
uniform sampler2D u_texture;
varying vec2 v_texcoord;

vec4 map_local_to_tex(vec4 x) {
    // Cast ray from 3D viewport to surface of image
    // (if $transform does not affect z values, then this
    // can be optimized as simply $transform.map(x) )
    vec4 p1 = $transform(x);
    vec4 p2 = $transform(x + vec4(0, 0, 0.5, 0));
    p1 /= p1.w;
    p2 /= p2.w;
    vec4 d = p2 - p1;
    float f = p2.z / d.z;
    vec4 p3 = p2 - d * f;

    // finally map local to texture coords
    return vec4(p3.xy / image_size, 0, 1);
}


void main()
{
    vec2 texcoord;
    if( method == 0 ) {
        texcoord = v_texcoord;
    }
    else {
        // vertex shader outputs clip coordinates;
        // fragment shader maps to texture coordinates
        texcoord = map_local_to_tex(vec4(v_texcoord, 0, 1)).xy;
    }

    gl_FragColor = $color_transform($get_data(texcoord));
}
"""  # noqa

_INTERPOLATION_TEMPLATE = """
    #include "misc/spatial-filters.frag"
    vec4 texture_lookup_filtered(vec2 texcoord) {
        if(texcoord.x < 0.0 || texcoord.x > 1.0 ||
        texcoord.y < 0.0 || texcoord.y > 1.0) {
            discard;
        }
        return %s($texture, $shape, texcoord);
    }"""

_TEXTURE_LOOKUP = """
    vec4 texture_lookup(vec2 texcoord) {
        if(texcoord.x < 0.0 || texcoord.x > 1.0 ||
        texcoord.y < 0.0 || texcoord.y > 1.0) {
            discard;
        }
        return texture2D($texture, texcoord);
    }"""

_APPLY_CLIM_FLOAT = """
    float apply_clim(float data) {
        // pass through NaN values to get handled by the colormap
        if (!(data <= 0.0 || 0.0 <= data)) return data;

        data = clamp(data, min($clim.x, $clim.y), max($clim.x, $clim.y));
        data = (data - $clim.x) / ($clim.y - $clim.x);
        return data;
    }"""

_APPLY_CLIM = """
    vec4 apply_clim(vec4 color) {
        // Handle NaN values (clamp them to the minimum value)
        // http://stackoverflow.com/questions/11810158/how-to-deal-with-nan-or-inf-in-opengl-es-2-0-shaders
        color.r = !(color.r <= 0.0 || 0.0 <= color.r) ? min($clim.x, $clim.y) : color.r;
        color.g = !(color.g <= 0.0 || 0.0 <= color.g) ? min($clim.x, $clim.y) : color.g;
        color.b = !(color.b <= 0.0 || 0.0 <= color.b) ? min($clim.x, $clim.y) : color.b;
        color.a = !(color.a <= 0.0 || 0.0 <= color.a) ? 0 : color.a;
        color.rgb = clamp(color.rgb, min($clim.x, $clim.y), max($clim.x, $clim.y));
        color.rgb = (color.rgb - $clim.x) / ($clim.y - $clim.x);
        return max(color, 0.0);
    }
"""

_APPLY_GAMMA_FLOAT = """
    float apply_gamma(float data) {
        // pass through NaN values to get handled by the colormap
        if (!(data <= 0.0 || 0.0 <= data)) return data;

        return pow(data, $gamma);
    }"""

_APPLY_GAMMA = """
    vec4 apply_gamma(vec4 color) {
        color.rgb = pow(color.rgb, vec3($gamma));
        return color;
    }
"""

_NULL_COLOR_TRANSFORM = 'vec4 pass(vec4 color) { return color; }'

_C2L_RED = 'float color_to_luminance(vec4 color) { return color.r; }'

_CUSTOM_FILTER = """
vec4 texture_lookup(vec2 texcoord) {
    // based on https://gist.github.com/kingbedjed/373c8811efcf1b3a155d29a13c1e5b61
    vec2 tex_pixel = 1 / $shape;
    vec2 kernel_pixel = 1 / $kernel_shape;
    vec2 sampling_corner = texcoord - ($kernel_shape / 2 * tex_pixel);

    // loop over kernel pixels
    vec2 kernel_pos, tex_pos;
    vec4 color = vec4(0);
    float weight;

    // offset 0.5 to sample center of pixels
    for (float i = 0.5; i < $kernel_shape.x; i++) {
        for (float j = 0.5; j < $kernel_shape.y; j++) {
            kernel_pos = vec2(i, j) * kernel_pixel;
            tex_pos = sampling_corner + vec2(i, j) * tex_pixel;
            // TODO: allow other edge effects, like mirror or wrap
            if (tex_pos.x >= 0 && tex_pos.y >= 0 && tex_pos.x <= 1 && tex_pos.y <= 1) {
                weight = texture2D($kernel, kernel_pos).r;
                // make sure to clamp or we sample outside
                color += texture2D($texture, clamp(tex_pos, 0, 1)) * weight;
            }
        }
    }

    return color;
}
"""


class ImageVisual(Visual):
    """Visual subclass displaying an image.

    Parameters
    ----------
    data : ndarray
        ImageVisual data. Can be shape (M, N), (M, N, 3), or (M, N, 4).
        If floating point data is provided and contains NaNs, they will
        be made transparent (discarded) for the single band data case when
        scaling is done on the GPU (see ``texture_format``). On the CPU,
        single band NaNs are mapped to 0 as they are sent to the GPU which
        result in them using the lowest ``clim`` value in the GPU.
        For RGB data, NaNs will be mapped to the lowest ``clim`` value.
        If the Alpha band is NaN it will be mapped to 0 (transparent).
        Note that NaN handling is not required by some OpenGL implementations
        and NaNs may be treated differently on some systems (ex. as 0s).
    method : str
        Selects method of rendering image in case of non-linear transforms.
        Each method produces similar results, but may trade efficiency
        and accuracy. If the transform is linear, this parameter is ignored
        and a single quad is drawn around the area of the image.

            * 'auto': Automatically select 'impostor' if the image is drawn
              with a nonlinear transform; otherwise select 'subdivide'.
            * 'subdivide': ImageVisual is represented as a grid of triangles
              with texture coordinates linearly mapped.
            * 'impostor': ImageVisual is represented as a quad covering the
              entire view, with texture coordinates determined by the
              transform. This produces the best transformation results, but may
              be slow.

    grid: tuple (rows, cols)
        If method='subdivide', this tuple determines the number of rows and
        columns in the image grid.
    cmap : str | ColorMap
        Colormap to use for luminance images.
    clim : str | tuple
        Limits to use for the colormap. I.e. the values that map to black and white
        in a gray colormap. Can be 'auto' to auto-set bounds to
        the min and max of the data. If not given or None, 'auto' is used.
    gamma : float
        Gamma to use during colormap lookup.  Final color will be cmap(val**gamma).
        by default: 1.
    interpolation : str
        Selects method of texture interpolation. Makes use of the two hardware
        interpolation methods and the available interpolation methods defined
        in vispy/gloo/glsl/misc/spatial_filters.frag

            * 'nearest': Default, uses 'nearest' with Texture interpolation.
            * 'linear': uses 'linear' with Texture interpolation.
            * 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'cubic',
                'catrom', 'mitchell', 'spline16', 'spline36', 'gaussian',
                'bessel', 'sinc', 'lanczos', 'blackman'
            * 'custom': uses the sampling kernel provided through 'custom_kernel'.
    texture_format: numpy.dtype | str | None
        How to store data on the GPU. OpenGL allows for many different storage
        formats and schemes for the low-level texture data stored in the GPU.
        Most common is unsigned integers or floating point numbers.
        Unsigned integers are the most widely supported while other formats
        may not be supported on older versions of OpenGL or with older GPUs.
        Default value is ``None`` which means data will be scaled on the
        CPU and the result stored in the GPU as an unsigned integer. If a
        numpy dtype object, an internal texture format will be chosen to
        support that dtype and data will *not* be scaled on the CPU. Not all
        dtypes are supported. If a string, then
        it must be one of the OpenGL internalformat strings described in the
        table on this page: https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glTexImage2D.xhtml
        The name should have `GL_` removed and be lowercase (ex.
        `GL_R32F` becomes ``'r32f'``). Lastly, this can also be the string
        ``'auto'`` which will use the data type of the provided image data
        to determine the internalformat of the texture.
        When this is specified (not ``None``) data is scaled on the
        GPU which allows for faster color limit changes. Additionally, when
        32-bit float data is provided it won't be copied before being
        transferred to the GPU.
    custom_kernel: numpy.ndarray
        Kernel used for texture sampling when interpolation is set to 'custom'.
    **kwargs : dict
        Keyword arguments to pass to `Visual`.

    Notes
    -----
    The colormap functionality through ``cmap`` and ``clim`` are only used
    if the data are 2D.
    """

    _shaders = {
        'vertex': _VERTEX_SHADER,
        'fragment': _FRAGMENT_SHADER,
    }

    _func_templates = {
        'texture_lookup_interpolated': _INTERPOLATION_TEMPLATE,
        'texture_lookup_custom': _CUSTOM_FILTER,
        'texture_lookup': _TEXTURE_LOOKUP,
        'clim_float': _APPLY_CLIM_FLOAT,
        'clim': _APPLY_CLIM,
        'gamma_float': _APPLY_GAMMA_FLOAT,
        'gamma': _APPLY_GAMMA,
        'null_color_transform': _NULL_COLOR_TRANSFORM,
        'red_to_luminance': _C2L_RED,
    }

    def __init__(self, data=None, method='auto', grid=(1, 1),
                 cmap='viridis', clim='auto', gamma=1.0,
                 interpolation='nearest', texture_format=None,
                 custom_kernel=np.ones((1, 1)), **kwargs):
        """Initialize image properties, texture storage, and interpolation methods."""
        self._data = None

        # load 'float packed rgba8' interpolation kernel
        # to load float interpolation kernel use
        # `load_spatial_filters(packed=False)`
        kernel, interpolation_names = load_spatial_filters()

        self._kerneltex = Texture2D(kernel, interpolation='nearest')
        # The unpacking can be debugged by changing "spatial-filters.frag"
        # to have the "unpack" function just return the .r component. That
        # combined with using the below as the _kerneltex allows debugging
        # of the pipeline
        # self._kerneltex = Texture2D(kernel, interpolation='linear',
        #                             internalformat='r32f')

        interpolation_names, interpolation_fun = self._init_interpolation(
            interpolation_names)
        self._interpolation_names = interpolation_names
        self._interpolation_fun = interpolation_fun
        self._interpolation = interpolation
        if self._interpolation not in self._interpolation_names:
            raise ValueError("interpolation must be one of %s" %
                             ', '.join(self._interpolation_names))

        self._method = method
        self._grid = grid
        self._need_texture_upload = True
        self._need_vertex_update = True
        self._need_colortransform_update = True
        self._need_interpolation_update = True
        self._texture = self._init_texture(data, texture_format)
        self._subdiv_position = VertexBuffer()
        self._subdiv_texcoord = VertexBuffer()

        # impostor quad covers entire viewport
        vertices = np.array([[-1, -1], [1, -1], [1, 1],
                             [-1, -1], [1, 1], [-1, 1]],
                            dtype=np.float32)
        self._impostor_coords = VertexBuffer(vertices)
        self._null_tr = NullTransform()

        self._init_view(self)

        Visual.__init__(self, vcode=self._shaders['vertex'], fcode=self._shaders['fragment'])
        self.set_gl_state('translucent', cull_face=False)
        self._draw_mode = 'triangles'

        # define _data_lookup_fn as None, will be setup in
        # self._build_interpolation()
        self._data_lookup_fn = None

        self.clim = clim or "auto"  # None -> "auto"
        self.cmap = cmap
        self.gamma = gamma
        self.custom_kernel = custom_kernel

        if data is not None:
            self.set_data(data)
        self.freeze()

    def _init_interpolation(self, interpolation_names):
        # create interpolation shader functions for available interpolations
        fun = [Function(self._func_templates['texture_lookup_interpolated'] % (n + '2D'))
               for n in interpolation_names]
        interpolation_names = [n.lower() for n in interpolation_names]

        # add custom filter
        fun.append(Function(self._func_templates['texture_lookup_custom']))
        interpolation_names.append('custom')

        interpolation_fun = dict(zip(interpolation_names, fun))
        interpolation_names = tuple(sorted(interpolation_names))

        # overwrite "nearest" and "linear" spatial-filters
        # with  "hardware" interpolation _data_lookup_fn
        hardware_lookup = Function(self._func_templates['texture_lookup'])
        interpolation_fun['nearest'] = hardware_lookup
        interpolation_fun['linear'] = hardware_lookup
        # alias bilinear to linear and bicubic to cubic (but deprecate)
        interpolation_names = interpolation_names + ('bilinear', 'bicubic')
        return interpolation_names, interpolation_fun

    def _init_texture(self, data, texture_format, **texture_kwargs):
        if self._interpolation == 'linear':
            texture_interpolation = 'linear'
        else:
            texture_interpolation = 'nearest'

        if texture_format is None:
            tex = CPUScaledTexture2D(
                data, interpolation=texture_interpolation,
                **texture_kwargs
            )
        else:
            tex = GPUScaledTexture2D(
                data, internalformat=texture_format,
                interpolation=texture_interpolation,
                **texture_kwargs
            )
        return tex

    def set_data(self, image, copy=False):
        """Set the image data.

        Parameters
        ----------
        image : array-like
            The image data.
        texture_format : str or None

        """
        data = np.array(image, copy=copy or np_copy_if_needed)
        if np.iscomplexobj(data):
            raise TypeError(
                "Complex data types not supported. Please use 'ComplexImage' instead"
            )
        # can the texture handle this data?
        self._texture.check_data_format(data)
        if self._data is None or self._data.shape[:2] != data.shape[:2]:
            # Only rebuild if the size of the image changed
            self._need_vertex_update = True
        self._data = data
        self._need_texture_upload = True

    def view(self):
        """Get the :class:`vispy.visuals.visual.VisualView` for this visual."""
        v = Visual.view(self)
        self._init_view(v)
        return v

    def _init_view(self, view):
        # Store some extra variables per-view
        view._need_method_update = True
        view._method_used = None

    @property
    def clim(self):
        """Get color limits used when rendering the image (cmin, cmax)."""
        return self._texture.clim

    @clim.setter
    def clim(self, clim):
        if self._texture.set_clim(clim):
            self._need_texture_upload = True
        self._update_colortransform_clim()
        self.update()

    def _update_colortransform_clim(self):
        if self._need_colortransform_update:
            # we are going to rebuild anyway so just do it later
            return
        try:
            norm_clims = self._texture.clim_normalized
        except RuntimeError:
            return
        else:
            # shortcut so we don't have to rebuild the whole color transform
            self.shared_program.frag['color_transform'][1]['clim'] = norm_clims

    @property
    def cmap(self):
        """Get the colormap object applied to luminance (single band) data."""
        return self._cmap

    @cmap.setter
    def cmap(self, cmap):
        self._cmap = get_colormap(cmap)
        self._need_colortransform_update = True
        self.update()

    @property
    def gamma(self):
        """Get the gamma used when rendering the image."""
        return self._gamma

    @gamma.setter
    def gamma(self, value):
        """Set gamma used when rendering the image."""
        if value <= 0:
            raise ValueError("gamma must be > 0")
        self._gamma = float(value)
        # shortcut so we don't have to rebuild the color transform
        if not self._need_colortransform_update:
            self.shared_program.frag['color_transform'][2]['gamma'] = self._gamma
        self.update()

    @property
    def bad_color(self):
        """Color used to render NaN values."""
        return self._cmap.get_bad_color()

    @bad_color.setter
    def bad_color(self, color):
        self._cmap.set_bad_color(color)
        self._need_colortransform_update = True
        self.update()

    @property
    def method(self):
        """Get rendering method name."""
        return self._method

    @method.setter
    def method(self, m):
        if self._method != m:
            self._method = m
            self._need_vertex_update = True
            self.update()

    @property
    def size(self):
        """Get size of the image (width, height)."""
        return self._data.shape[:2][::-1]

    @property
    def interpolation(self):
        """Get interpolation algorithm name."""
        return self._interpolation

    @interpolation.setter
    def interpolation(self, i):
        if i not in self._interpolation_names:
            raise ValueError("interpolation must be one of %s" %
                             ', '.join(self._interpolation_names))
        if self._interpolation != i:
            self._interpolation = i
            self._need_interpolation_update = True
            self.update()

    @property
    def interpolation_functions(self):
        """Get names of possible interpolation methods."""
        return self._interpolation_names

    @property
    def custom_kernel(self):
        """Kernel used by 'custom' interpolation for texture sampling"""
        return self._custom_kernel

    @custom_kernel.setter
    def custom_kernel(self, value):
        value = np.asarray(value, dtype=np.float32)
        if value.ndim != 2:
            raise ValueError(f'kernel must have 2 dimensions; got {value.ndim}')
        self._custom_kernel = value
        self._custom_kerneltex = Texture2D(value, interpolation='nearest', internalformat='r32f')
        if self._data_lookup_fn is not None and 'kernel' in self._data_lookup_fn:
            self._data_lookup_fn['kernel'] = self._custom_kerneltex
            self._data_lookup_fn['kernel_shape'] = value.shape[::-1]
        self.update()

    # The interpolation code could be transferred to a dedicated filter
    # function in visuals/filters as discussed in #1051
    def _build_interpolation(self):
        """Rebuild the _data_lookup_fn for different interpolations."""
        interpolation = self._interpolation
        # alias bilinear to linear
        if interpolation == 'bilinear':
            warnings.warn(
                "'bilinear' interpolation is Deprecated. Use 'linear' instead.",
                DeprecationWarning,
                stacklevel=2,
            )
            interpolation = 'linear'
        # alias bicubic to cubic
        if interpolation == 'bicubic':
            warnings.warn(
                "'bicubic' interpolation is Deprecated. Use 'cubic' instead.",
                DeprecationWarning,
                stacklevel=2,
            )
            interpolation = 'cubic'
        self._data_lookup_fn = self._interpolation_fun[interpolation]
        self.shared_program.frag['get_data'] = self._data_lookup_fn

        # only 'linear' and 'custom' use 'linear' texture interpolation
        if interpolation in ('linear', 'custom'):
            texture_interpolation = 'linear'
        else:
            texture_interpolation = 'nearest'

        # 'nearest' (and also 'linear') doesn't use spatial_filters.frag
        # so u_kernel and shape setting is skipped
        if interpolation not in ('nearest', 'linear'):
            self._data_lookup_fn['shape'] = self._data.shape[:2][::-1]
            if interpolation == 'custom':
                self._data_lookup_fn['kernel'] = self._custom_kerneltex
                self._data_lookup_fn['kernel_shape'] = self._custom_kernel.shape[::-1]
            else:
                self.shared_program['u_kernel'] = self._kerneltex

        if self._texture.interpolation != texture_interpolation:
            self._texture.interpolation = texture_interpolation

        self._data_lookup_fn['texture'] = self._texture

        self._need_interpolation_update = False

    def _build_vertex_data(self):
        """Rebuild the vertex buffers for the subdivide method."""
        grid = self._grid
        w = 1.0 / grid[1]
        h = 1.0 / grid[0]

        quad = np.array([[0, 0, 0], [w, 0, 0], [w, h, 0],
                         [0, 0, 0], [w, h, 0], [0, h, 0]],
                        dtype=np.float32)
        quads = np.empty((grid[1], grid[0], 6, 3), dtype=np.float32)
        quads[:] = quad

        mgrid = np.mgrid[0.:grid[1], 0.:grid[0]].transpose(1, 2, 0)
        mgrid = mgrid[:, :, np.newaxis, :]
        mgrid[..., 0] *= w
        mgrid[..., 1] *= h

        quads[..., :2] += mgrid
        tex_coords = quads.reshape(grid[1]*grid[0]*6, 3)
        tex_coords = np.ascontiguousarray(tex_coords[:, :2])
        vertices = tex_coords * self.size

        self._subdiv_position.set_data(vertices.astype('float32'))
        self._subdiv_texcoord.set_data(tex_coords.astype('float32'))
        self._need_vertex_update = False

    def _update_method(self, view):
        """Decide which method to use for *view* and configure it accordingly."""
        method = self._method
        if method == 'auto':
            if view.transforms.get_transform().Linear:
                method = 'subdivide'
            else:
                method = 'impostor'
        view._method_used = method

        if method == 'subdivide':
            view.view_program['method'] = 0
            view.view_program['a_position'] = self._subdiv_position
            view.view_program['a_texcoord'] = self._subdiv_texcoord
        elif method == 'impostor':
            view.view_program['method'] = 1
            view.view_program['a_position'] = self._impostor_coords
            view.view_program['a_texcoord'] = self._impostor_coords
        else:
            raise ValueError("Unknown image draw method '%s'" % method)

        self.shared_program['image_size'] = self.size
        view._need_method_update = False
        self._prepare_transforms(view)

    def _build_texture(self):
        try:
            pre_clims = self._texture.clim_normalized
        except RuntimeError:
            pre_clims = "auto"
        pre_internalformat = self._texture.internalformat
        # copy was already made on `set_data` if requested
        self._texture.scale_and_set_data(self._data, copy=False)
        post_clims = self._texture.clim_normalized
        post_internalformat = self._texture.internalformat
        # color transform needs rebuilding if the internalformat was changed
        # new color limits need to be assigned if the normalized clims changed
        # otherwise, the original color transform should be fine
        new_if = post_internalformat != pre_internalformat
        new_cl = post_clims != pre_clims
        if new_if:
            self._need_colortransform_update = True
        elif new_cl and not self._need_colortransform_update:
            # shortcut so we don't have to rebuild the whole color transform
            self.shared_program.frag['color_transform'][1]['clim'] = self._texture.clim_normalized
        self._need_texture_upload = False

    def _compute_bounds(self, axis, view):
        if axis > 1:
            return 0, 0
        else:
            return 0, self.size[axis]

    def _build_color_transform(self):
        if self._data.ndim == 2 or self._data.shape[2] == 1:
            # luminance data
            fclim = Function(self._func_templates['clim_float'])
            fgamma = Function(self._func_templates['gamma_float'])
            # NOTE: red_to_luminance only uses the red component, fancy internalformats
            #   may need to use the other components or a different function chain
            fun = FunctionChain(
                None, [Function(self._func_templates['red_to_luminance']), fclim, fgamma, Function(self.cmap.glsl_map)]
            )
        else:
            # RGB/A image data (no colormap)
            fclim = Function(self._func_templates['clim'])
            fgamma = Function(self._func_templates['gamma'])
            fun = FunctionChain(None, [Function(self._func_templates['null_color_transform']), fclim, fgamma])
        fclim['clim'] = self._texture.clim_normalized
        fgamma['gamma'] = self.gamma
        return fun

    def _prepare_transforms(self, view):
        trs = view.transforms
        prg = view.view_program
        method = view._method_used
        if method == 'subdivide':
            prg.vert['transform'] = trs.get_transform()
            prg.frag['transform'] = self._null_tr
        else:
            prg.vert['transform'] = self._null_tr
            prg.frag['transform'] = trs.get_transform().inverse

    def _prepare_draw(self, view):
        if self._data is None:
            return False

        if self._need_interpolation_update:
            self._build_interpolation()

        if self._need_texture_upload:
            self._build_texture()

        if self._need_colortransform_update:
            prg = view.view_program
            self.shared_program.frag['color_transform'] = self._build_color_transform()
            self._need_colortransform_update = False
            prg['texture2D_LUT'] = self.cmap.texture_lut()

        if self._need_vertex_update:
            self._build_vertex_data()

        if view._need_method_update:
            self._update_method(view)