1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
|
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
"""Marker Visual and shader definitions."""
import numpy as np
from ..color import ColorArray
from ..gloo import VertexBuffer
from .shaders import Function, Variable
from .visual import Visual
from ..util.event import Event
_VERTEX_SHADER = """
uniform float u_antialias;
uniform float u_px_scale;
uniform bool u_scaling;
uniform bool u_spherical;
attribute vec3 a_position;
attribute vec4 a_fg_color;
attribute vec4 a_bg_color;
attribute float a_edgewidth;
attribute float a_size;
attribute float a_symbol;
varying vec4 v_fg_color;
varying vec4 v_bg_color;
varying float v_edgewidth;
varying float v_depth_middle;
varying float v_alias_ratio;
varying float v_symbol;
float big_float = 1e10; // prevents numerical imprecision
void main (void) {
v_fg_color = a_fg_color;
v_bg_color = a_bg_color;
// fluctuations can mess "fake integers" up, so we do +0.5 and floor to make sure it's right
v_symbol = a_symbol + 0.5;
vec4 pos = vec4(a_position, 1);
vec4 fb_pos = $visual_to_framebuffer(pos);
vec4 x;
vec4 size_vec;
gl_Position = $framebuffer_to_render(fb_pos);
// NOTE: gl_stuff uses framebuffer coords!
if (u_scaling) {
// scaling == "scene": scale marker using entire visual -> framebuffer set of transforms
// scaling == "visual": scale marker using only the Visual's transform
pos = $framebuffer_to_scene_or_visual(fb_pos);
x = $framebuffer_to_scene_or_visual(fb_pos + vec4(big_float, 0, 0, 0));
x = (x - pos);
// multiply that direction by the size and add it to the position
// this gives us the position of the edge of the point, which we convert in screen space
size_vec = $scene_or_visual_to_framebuffer(pos + normalize(x) * a_size);
// divide by `w` for perspective, and subtract pos
// this gives us the actual screen-space size of the point
$v_size = size_vec.x / size_vec.w - fb_pos.x / fb_pos.w;
v_edgewidth = ($v_size / a_size) * a_edgewidth;
}
else {
// scaling == "fixed": marker is always the same number of pixels
$v_size = a_size * u_px_scale;
v_edgewidth = a_edgewidth * u_px_scale;
}
// gl_PointSize is the diameter
gl_PointSize = $v_size + 4. * (v_edgewidth + 1.5 * u_antialias);
if (u_spherical == true) {
// similar as above for scaling, but in towards the screen direction
// Get the framebuffer z direction relative to this sphere in visual coords
vec4 z = $framebuffer_to_scene_or_visual(fb_pos + vec4(0, 0, big_float, 0));
z = (z - pos);
// Get the depth of the sphere in its middle point on the screen
// size/2 because we need the radius, not the diameter
vec4 depth_z_vec = $scene_or_visual_to_framebuffer(pos + normalize(z) * a_size / 2);
v_depth_middle = depth_z_vec.z / depth_z_vec.w - fb_pos.z / fb_pos.w;
// size ratio between aliased and non-aliased, needed for correct depth
v_alias_ratio = gl_PointSize / $v_size;
}
}
"""
_FRAGMENT_SHADER = """#version 120
uniform vec3 u_light_position;
uniform vec3 u_light_color;
uniform float u_light_ambient;
uniform float u_alpha;
uniform float u_antialias;
uniform bool u_spherical;
varying vec4 v_fg_color;
varying vec4 v_bg_color;
varying float v_edgewidth;
varying float v_depth_middle;
varying float v_alias_ratio;
varying float v_symbol;
void main()
{
// Discard plotting marker body and edge if zero-size
if ($v_size <= 0.)
discard;
float edgealphafactor = min(v_edgewidth, 1.0);
float size = $v_size + 4.*(v_edgewidth + 1.5*u_antialias);
// factor 6 for acute edge angles that need room as for star marker
// The marker function needs to be linked with this shader
float r = $marker(gl_PointCoord, size, int(v_symbol));
// it takes into account an antialising layer
// of size u_antialias inside the edge
// r:
// [-e/2-a, -e/2+a] antialising face-edge
// [-e/2+a, e/2-a] core edge (center 0, diameter e-2a = 2t)
// [e/2-a, e/2+a] antialising edge-background
// use max because we don't want negative transition zone
float t = max(0.5*v_edgewidth - u_antialias, 0);
float d = abs(r) - t;
if (r > 0.5*v_edgewidth + u_antialias)
{
// out of the marker (beyond the outer edge of the edge
// including transition zone due to antialiasing)
discard;
}
vec4 facecolor = v_bg_color;
vec4 edgecolor = vec4(v_fg_color.rgb, edgealphafactor*v_fg_color.a);
float depth_change = 0;
// change color and depth if spherical mode is active
if (u_spherical == true) {
// multiply by alias_ratio and then clamp, so we're back to non-alias coordinates
// and the aliasing ring has the same coordinates as the point just inside,
// which is important for lighting
vec2 texcoord = (gl_PointCoord * 2 - 1) * v_alias_ratio;
float x = clamp(texcoord.x, -1, 1);
float y = clamp(texcoord.y, -1, 1);
float z = sqrt(clamp(1 - x*x - y*y, 0, 1));
vec3 normal = vec3(x, y, z);
// Diffuse color
float diffuse = dot(u_light_position, normal);
// clamp, because 0 < theta < pi/2
diffuse = clamp(diffuse, 0, 1);
vec3 diffuse_color = u_light_ambient + u_light_color * diffuse;
// Specular color
// reflect light wrt normal for the reflected ray, then
// find the angle made with the eye
vec3 eye = vec3(0, 0, -1);
float specular = dot(reflect(u_light_position, normal), eye);
specular = clamp(specular, 0, 1);
// raise to the material's shininess, multiply with a
// small factor for spread
specular = pow(specular, 80);
vec3 specular_color = u_light_color * specular;
facecolor = vec4(facecolor.rgb * diffuse_color + specular_color, facecolor.a * u_alpha);
edgecolor = vec4(edgecolor.rgb * diffuse_color + specular_color, edgecolor.a * u_alpha);
// TODO: figure out why this 0.5 is needed, despite already having the radius, not diameter
depth_change = -0.5 * z * v_depth_middle;
}
if (d < 0.0)
{
// inside the width of the edge
// (core, out of the transition zone for antialiasing)
gl_FragColor = edgecolor;
}
else if (v_edgewidth == 0.)
{// no edge
if (r > -u_antialias)
{// outside
float alpha = 1.0 + r/u_antialias;
alpha = exp(-alpha*alpha);
gl_FragColor = vec4(facecolor.rgb, alpha*facecolor.a);
}
else
{// inside
gl_FragColor = facecolor;
}
}
else
{// non-zero edge
float alpha = d/u_antialias;
alpha = exp(-alpha*alpha);
if (r > 0.)
{
// outer part of the edge: fade out into the background...
gl_FragColor = vec4(edgecolor.rgb, alpha*edgecolor.a);
}
else
{
// inner part of the edge: fade into the face color
gl_FragColor = mix(facecolor, edgecolor, alpha);
}
}
gl_FragDepth = gl_FragCoord.z + depth_change;
}
"""
disc = """
float r = length((pointcoord.xy - vec2(0.5,0.5))*size);
r -= $v_size/2.;
return r;
"""
arrow = """
const float sqrt2 = sqrt(2.);
float half_size = $v_size/2.;
float ady = abs(pointcoord.y -.5)*size;
float dx = (pointcoord.x -.5)*size;
float r1 = abs(dx) + ady - half_size;
float r2 = dx + 0.25*$v_size + ady - half_size;
float r = max(r1,-r2);
return r/sqrt2;//account for slanted edge and correct for width
"""
ring = """
float r1 = length((pointcoord.xy - vec2(0.5,0.5))*size) - $v_size/2.;
float r2 = length((pointcoord.xy - vec2(0.5,0.5))*size) - $v_size/4.;
float r = max(r1,-r2);
return r;
"""
clobber = """
const float sqrt3 = sqrt(3.);
const float PI = 3.14159265358979323846264;
const float t1 = -PI/2;
float circle_radius = 0.32 * $v_size;
float center_shift = 0.36/sqrt3 * $v_size;
//total size (horizontal) = 2*circle_radius + sqrt3*center_shirt = $v_size
vec2 c1 = vec2(cos(t1),sin(t1))*center_shift;
const float t2 = t1+2*PI/3;
vec2 c2 = vec2(cos(t2),sin(t2))*center_shift;
const float t3 = t2+2*PI/3;
vec2 c3 = vec2(cos(t3),sin(t3))*center_shift;
//xy is shift to center marker vertically
vec2 xy = (pointcoord.xy-vec2(0.5,0.5))*size + vec2(0.,-0.25*center_shift);
float r1 = length(xy - c1) - circle_radius;
float r2 = length(xy - c2) - circle_radius;
float r3 = length(xy - c3) - circle_radius;
float r = min(min(r1,r2),r3);
return r;
"""
square = """
float r = max(abs(pointcoord.x -.5)*size, abs(pointcoord.y -.5)*size);
r -= $v_size/2.;
return r;
"""
x = """
vec2 rotcoord = vec2((pointcoord.x + pointcoord.y - 1.) / sqrt(2.),
(pointcoord.y - pointcoord.x) / sqrt(2.));
//vbar
float r1 = abs(rotcoord.x)*size - $v_size/6.;
float r2 = abs(rotcoord.y)*size - $v_size/2.;
float vbar = max(r1,r2);
//hbar
float r3 = abs(rotcoord.y)*size - $v_size/6.;
float r4 = abs(rotcoord.x)*size - $v_size/2.;
float hbar = max(r3,r4);
return min(vbar, hbar);
"""
diamond = """
float r = abs(pointcoord.x -.5)*size + abs(pointcoord.y -.5)*size;
r -= $v_size/2.;
return r / sqrt(2.);//account for slanted edge and correct for width
"""
vbar = """
float r1 = abs(pointcoord.x - 0.5)*size - $v_size/6.;
float r3 = abs(pointcoord.y - 0.5)*size - $v_size/2.;
float r = max(r1,r3);
return r;
"""
hbar = """
float r2 = abs(pointcoord.y - 0.5)*size - $v_size/6.;
float r3 = abs(pointcoord.x - 0.5)*size - $v_size/2.;
float r = max(r2,r3);
return r;
"""
cross = """
//vbar
float r1 = abs(pointcoord.x - 0.5)*size - $v_size/6.;
float r2 = abs(pointcoord.y - 0.5)*size - $v_size/2.;
float vbar = max(r1,r2);
//hbar
float r3 = abs(pointcoord.y - 0.5)*size - $v_size/6.;
float r4 = abs(pointcoord.x - 0.5)*size - $v_size/2.;
float hbar = max(r3,r4);
return min(vbar, hbar);
"""
tailed_arrow = """
const float sqrt2 = sqrt(2.);
float half_size = $v_size/2.;
float ady = abs(pointcoord.y -.5)*size;
float dx = (pointcoord.x -.5)*size;
float r1 = abs(dx) + ady - half_size;
float r2 = dx + 0.25*$v_size + ady - half_size;
float arrow = max(r1,-r2);
//hbar
float upper_bottom_edges = ady - $v_size/8./sqrt2;
float left_edge = -dx - half_size;
float right_edge = dx + ady - half_size;
float hbar = max(upper_bottom_edges, left_edge);
float scale = 1.; //rescaling for slanted edge
if (right_edge >= hbar)
{
hbar = right_edge;
scale = sqrt2;
}
if (arrow <= hbar)
{
return arrow / sqrt2;//account for slanted edge and correct for width
}
else
{
return hbar / scale;
}
"""
triangle_up = """
float height = $v_size*sqrt(3.)/2.;
float bottom = ((pointcoord.y - 0.5)*size - height/2.);
float rotated_y = sqrt(3.)/2. * (pointcoord.x - 0.5) * size
- 0.5 * ((pointcoord.y - 0.5)*size - height/6.) + height/6.;
float right_edge = (rotated_y - height/2.);
float cc_rotated_y = -sqrt(3.)/2. * (pointcoord.x - 0.5)*size
- 0.5 * ((pointcoord.y - 0.5)*size - height/6.) + height/6.;
float left_edge = (cc_rotated_y - height/2.);
float slanted_edges = max(right_edge, left_edge);
return max(slanted_edges, bottom);
"""
triangle_down = """
float height = -$v_size*sqrt(3.)/2.;
float bottom = -((pointcoord.y - 0.5)*size - height/2.);
float rotated_y = sqrt(3.)/2. * (pointcoord.x - 0.5) * size
- 0.5 * ((pointcoord.y - 0.5)*size - height/6.) + height/6.;
float right_edge = -(rotated_y - height/2.);
float cc_rotated_y = -sqrt(3.)/2. * (pointcoord.x - 0.5)*size
- 0.5 * ((pointcoord.y - 0.5)*size - height/6.) + height/6.;
float left_edge = -(cc_rotated_y - height/2.);
float slanted_edges = max(right_edge, left_edge);
return max(slanted_edges, bottom);
"""
star = """
float star = -10000.;
const float PI2_5 = 3.141592653589*2./5.;
const float PI2_20 = 3.141592653589/10.; //PI*2/20
// downwards shift to that the marker center is halfway vertically
// between the top of the upward spike (y = -v_size/2.)
// and the bottom of one of two downward spikes
// (y = +v_size/2.*cos(2.*pi/10.) approx +v_size/2.*0.8)
// center is at -v_size/2.*0.1
float shift_y = -0.05*$v_size;
// first spike upwards,
// rotate spike by 72 deg four times to complete the star
for (int i = 0; i <= 4; i++)
{
//if not the first spike, rotate it upwards
float x = (pointcoord.x - 0.5)*size;
float y = (pointcoord.y - 0.5)*size;
float spike_rot_angle = float(i) * PI2_5;
float cosangle = cos(spike_rot_angle);
float sinangle = sin(spike_rot_angle);
float spike_x = x;
float spike_y = y + shift_y;
if (i > 0)
{
spike_x = cosangle * x - sinangle * (y + shift_y);
spike_y = sinangle * x + cosangle * (y + shift_y);
}
// in the frame where the spike is upwards:
// rotate 18 deg the zone x < 0 around the top of the star
// (point whose coords are -s/2, 0 where s is the size of the marker)
// compute y coordonates as well because
// we do a second rotation to put the spike at its final position
float rot_center_y = -$v_size/2.;
float rot18x = cos(PI2_20) * spike_x
- sin(PI2_20) * (spike_y - rot_center_y);
//rotate -18 deg the zone x > 0 arount the top of the star
float rot_18x = cos(PI2_20) * spike_x
+ sin(PI2_20) * (spike_y - rot_center_y);
float bottom = spike_y - $v_size/10.;
// max(left edge, right edge)
float spike = max(bottom, max(rot18x, -rot_18x));
if (i == 0)
{// first spike, skip the rotation
star = spike;
}
else // i > 0
{
star = min(star, spike);
}
}
return star;
"""
cross_lines = """
//vbar
float r1 = abs(pointcoord.x - 0.5)*size;
float r2 = abs(pointcoord.y - 0.5)*size - $v_size/2;
float vbar = max(r1,r2);
//hbar
float r3 = abs(pointcoord.y - 0.5)*size;
float r4 = abs(pointcoord.x - 0.5)*size - $v_size/2;
float hbar = max(r3,r4);
return min(vbar, hbar);
"""
symbol_shaders = {
'disc': disc,
'arrow': arrow,
'ring': ring,
'clobber': clobber,
'square': square,
'x': x,
'diamond': diamond,
'vbar': vbar,
'hbar': hbar,
'cross': cross,
'tailed_arrow': tailed_arrow,
'triangle_up': triangle_up,
'triangle_down': triangle_down,
'star': star,
'cross_lines': cross_lines,
}
# combine all the symbol shaders in a big if-else statement
symbol_func = f"""
float symbol(vec2 pointcoord, float size, int symbol) {{
{' else'.join(
f''' if (symbol == {i}) {{
// {name}
{shader}
}}'''
for i, (name, shader) in enumerate(symbol_shaders.items())
)}
}}"""
# aliases
symbol_aliases = {
'o': 'disc',
'+': 'cross',
'++': 'cross_lines',
's': 'square',
'-': 'hbar',
'|': 'vbar',
'->': 'tailed_arrow',
'>': 'arrow',
'^': 'triangle_up',
'v': 'triangle_down',
'*': 'star',
}
symbol_shader_values = {name: i for i, name in enumerate(symbol_shaders)}
symbol_shader_values.update({
**{alias: symbol_shader_values[name] for alias, name in symbol_aliases.items()},
})
class MarkersVisual(Visual):
"""Visual displaying marker symbols.
Parameters
----------
pos : array
The array of locations to display each symbol.
size : float or array
The symbol size in screen (or data, if scaling is on) px.
edge_width : float or array or None
The width of the symbol outline in screen (or data, if scaling is on) px.
Defaults to 1.0 if None or not provided and ``edge_width_rel`` is not
provided.
edge_width_rel : float or array or None
The width as a fraction of marker size. Can not be specified along with
edge_width. A ValueError will be raised if both are provided.
edge_color : Color | ColorArray
The color used to draw each symbol outline.
face_color : Color | ColorArray
The color used to draw each symbol interior.
symbol : str or array
The style of symbol used to draw each marker (see Notes).
scaling : str | bool
Scaling method of individual markers. If set to "fixed" (default) then
no scaling is done and markers will always be the same number of
pixels on the screen. If set to "scene" then the chain of transforms
from the Visual's transform to the transform mapping to the OpenGL
framebuffer are used to scaling the marker. This has the effect of the
marker staying the same size in the "scene" coordinate space and
changing size as the visualization is zoomed in and out. If set to
"visual" the marker is scaled only using the transform of the Visual
and not the rest of the scene/camera. This means that something like
a camera changing the view will not affect the size of the marker, but
the user can still scale it using the Visual's transform. For
backwards compatibility this can be set to the boolean ``False`` for
"fixed" or ``True`` for "scene".
alpha : float
The opacity level of the visual.
antialias : float
Antialiasing amount (in px).
spherical : bool
Whether to add a spherical effect on the marker using lighting.
light_color : Color | ColorArray
The color of the light used to create the spherical effect.
light_position : array
The coordinates of the light used to create the spherical effect.
light_ambient : float
The amount of ambient light used to create the spherical effect.
Notes
-----
Allowed style strings are: disc, arrow, ring, clobber, square, diamond,
vbar, hbar, cross, tailed_arrow, x, triangle_up, triangle_down,
and star.
"""
_shaders = {
'vertex': _VERTEX_SHADER,
'fragment': _FRAGMENT_SHADER,
}
_symbol_shader_values = symbol_shader_values
_symbol_shader = symbol_func
def __init__(self, scaling="fixed", alpha=1, antialias=1, spherical=False,
light_color='white', light_position=(1, -1, 1), light_ambient=0.3, **kwargs):
self._vbo = VertexBuffer()
self._data = None
self._scaling = "fixed"
Visual.__init__(self, vcode=self._shaders['vertex'], fcode=self._shaders['fragment'])
self._symbol_func = Function(self._symbol_shader)
self.shared_program.frag['marker'] = self._symbol_func
self._v_size_var = Variable('varying float v_size')
self.shared_program.vert['v_size'] = self._v_size_var
self.shared_program.frag['v_size'] = self._v_size_var
self._symbol_func['v_size'] = self._v_size_var
self.set_gl_state(depth_test=True, blend=True,
blend_func=('src_alpha', 'one_minus_src_alpha'))
self._draw_mode = 'points'
self.events.add(data_updated=Event)
if len(kwargs) > 0:
self.set_data(**kwargs)
self.scaling = scaling
self.antialias = antialias
self.light_color = light_color
self.light_position = light_position
self.light_ambient = light_ambient
self.alpha = alpha
self.spherical = spherical
self.freeze()
def set_data(self, pos=None, size=10., edge_width=None, edge_width_rel=None,
edge_color='black', face_color='white',
symbol='o'):
"""Set the data used to display this visual.
Parameters
----------
pos : array
The array of locations to display each symbol.
size : float or array
The symbol size in screen (or data, if scaling is on) px.
edge_width : float or array or None
The width of the symbol outline in screen (or data, if scaling is on) px.
Defaults to 1.0 if None or not provided and ``edge_width_rel`` is not
provided.
edge_width_rel : float or array or None
The width as a fraction of marker size. Can not be specified along with
edge_width. A ValueError will be raised if both are provided.
edge_color : Color | ColorArray
The color used to draw each symbol outline.
face_color : Color | ColorArray
The color used to draw each symbol interior.
symbol : str or array
The style of symbol used to draw each marker (see Notes).
"""
if edge_width is not None and edge_width_rel is not None:
raise ValueError("either edge_width or edge_width_rel "
"should be provided, not both")
elif edge_width is None and edge_width_rel is None:
edge_width = 1.0
if edge_width is not None:
edge_width = np.asarray(edge_width)
if np.any(edge_width < 0):
raise ValueError('edge_width cannot be negative')
else:
edge_width_rel = np.asarray(edge_width_rel)
if np.any(edge_width_rel < 0):
raise ValueError('edge_width_rel cannot be negative')
edge_color = ColorArray(edge_color).rgba
if len(edge_color) == 1:
edge_color = edge_color[0]
face_color = ColorArray(face_color).rgba
if len(face_color) == 1:
face_color = face_color[0]
if pos is not None:
assert (isinstance(pos, np.ndarray) and
pos.ndim == 2 and pos.shape[1] in (2, 3))
n = len(pos)
data = np.zeros(n, dtype=[('a_position', np.float32, 3),
('a_fg_color', np.float32, 4),
('a_bg_color', np.float32, 4),
('a_size', np.float32),
('a_edgewidth', np.float32),
('a_symbol', np.float32)])
data['a_fg_color'] = edge_color
data['a_bg_color'] = face_color
if edge_width is not None:
data['a_edgewidth'] = edge_width
else:
data['a_edgewidth'] = size * edge_width_rel
data['a_position'][:, :pos.shape[1]] = pos
data['a_size'] = size
if symbol is None:
data["a_symbol"] = np.array(None)
else:
if isinstance(symbol, str):
symbol = [symbol]
try:
data['a_symbol'] = np.array([self._symbol_shader_values[x] for x in symbol])
except KeyError:
raise ValueError(f'symbols must one of {self.symbols}')
self._data = data
self._vbo.set_data(data)
self.shared_program.bind(self._vbo)
self.events.data_updated()
self.update()
@property
def symbols(self):
return list(self._symbol_shader_values)
@property
def symbol(self):
if self._data is None:
return None
value_to_symbol = {v: k for k, v in self._symbol_shader_values.items()}
return np.vectorize(value_to_symbol.get)(self._data['a_symbol'])
@symbol.setter
def symbol(self, value):
if self._data is not None:
rec_to_kw = {
'a_position': 'pos',
'a_fg_color': 'edge_color',
'a_bg_color': 'face_color',
'a_size': 'size',
'a_edgewidth': 'edge_width',
'a_symbol': 'symbol',
}
kwargs = {kw: self._data[rec] for rec, kw in rec_to_kw.items()}
else:
kwargs = {}
kwargs['symbol'] = value
self.set_data(**kwargs)
@property
def scaling(self):
"""
If set to True, marker scales when rezooming.
"""
return self._scaling
@scaling.setter
def scaling(self, value):
scaling_modes = {
False: "fixed",
True: "scene",
"fixed": "fixed",
"scene": "scene",
"visual": "visual",
}
if value not in scaling_modes:
possible_options = ", ".join(repr(opt) for opt in scaling_modes)
raise ValueError(f"Unknown scaling option {value!r}, expected one of: {possible_options}")
self._scaling = scaling_modes[value]
self.shared_program['u_scaling'] = self._scaling != "fixed"
self.update()
@property
def antialias(self):
"""
Antialiasing amount (in px).
"""
return self._antialias
@antialias.setter
def antialias(self, value):
value = float(value)
self.shared_program['u_antialias'] = value
self._antialias = value
self.update()
@property
def light_position(self):
"""
The coordinates of the light used to create the spherical effect.
"""
return self._light_position
@light_position.setter
def light_position(self, value):
value = np.array(value)
self.shared_program['u_light_position'] = value / np.linalg.norm(value)
self._light_position = value
self.update()
@property
def light_ambient(self):
"""
The amount of ambient light used to create the spherical effect.
"""
return self._light_ambient
@light_ambient.setter
def light_ambient(self, value):
self.shared_program['u_light_ambient'] = value
self._light_ambient = value
self.update()
@property
def light_color(self):
"""
The color of the light used to create the spherical effect.
"""
return self._light_color
@light_color.setter
def light_color(self, value):
self.shared_program['u_light_color'] = ColorArray(value).rgb
self._light_color = value
self.update()
@property
def alpha(self):
"""
The opacity level of the visual.
"""
return self._alpha
@alpha.setter
def alpha(self, value):
self.shared_program['u_alpha'] = value
self._alpha = value
self.update()
@property
def spherical(self):
"""
Whether to add a spherical effect on the marker using lighting.
"""
return self._spherical
@spherical.setter
def spherical(self, value):
self.shared_program['u_spherical'] = value
self._spherical = value
self.update()
def _prepare_transforms(self, view):
view.view_program.vert['visual_to_framebuffer'] = view.get_transform('visual', 'framebuffer')
view.view_program.vert['framebuffer_to_render'] = view.get_transform('framebuffer', 'render')
scaling = view._scaling if view._scaling != "fixed" else "scene"
view.view_program.vert['framebuffer_to_scene_or_visual'] = view.get_transform('framebuffer', scaling)
view.view_program.vert['scene_or_visual_to_framebuffer'] = view.get_transform(scaling, 'framebuffer')
def _prepare_draw(self, view):
if self._data is None:
return False
view.view_program['u_px_scale'] = view.transforms.pixel_scale
def _compute_bounds(self, axis, view):
pos = self._data['a_position']
if pos is None:
return None
if pos.shape[1] > axis:
return (pos[:, axis].min(), pos[:, axis].max())
else:
return (0, 0)
|