File: markers.py

package info (click to toggle)
python-vispy 0.15.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,868 kB
  • sloc: python: 59,799; javascript: 6,800; makefile: 69; sh: 6
file content (819 lines) | stat: -rw-r--r-- 27,384 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
"""Marker Visual and shader definitions."""
import numpy as np

from ..color import ColorArray
from ..gloo import VertexBuffer
from .shaders import Function, Variable
from .visual import Visual
from ..util.event import Event


_VERTEX_SHADER = """
uniform float u_antialias;
uniform float u_px_scale;
uniform bool u_scaling;
uniform bool u_spherical;

attribute vec3 a_position;
attribute vec4 a_fg_color;
attribute vec4 a_bg_color;
attribute float a_edgewidth;
attribute float a_size;
attribute float a_symbol;

varying vec4 v_fg_color;
varying vec4 v_bg_color;
varying float v_edgewidth;
varying float v_depth_middle;
varying float v_alias_ratio;
varying float v_symbol;

float big_float = 1e10; // prevents numerical imprecision

void main (void) {
    v_fg_color  = a_fg_color;
    v_bg_color  = a_bg_color;
    // fluctuations can mess "fake integers" up, so we do +0.5 and floor to make sure it's right
    v_symbol = a_symbol + 0.5;

    vec4 pos = vec4(a_position, 1);
    vec4 fb_pos = $visual_to_framebuffer(pos);
    vec4 x;
    vec4 size_vec;
    gl_Position = $framebuffer_to_render(fb_pos);

    // NOTE: gl_stuff uses framebuffer coords!
    if (u_scaling) {
        // scaling == "scene": scale marker using entire visual -> framebuffer set of transforms
        // scaling == "visual": scale marker using only the Visual's transform
        pos = $framebuffer_to_scene_or_visual(fb_pos);
        x = $framebuffer_to_scene_or_visual(fb_pos + vec4(big_float, 0, 0, 0));
        x = (x - pos);
        // multiply that direction by the size and add it to the position
        // this gives us the position of the edge of the point, which we convert in screen space
        size_vec = $scene_or_visual_to_framebuffer(pos + normalize(x) * a_size);
        // divide by `w` for perspective, and subtract pos
        // this gives us the actual screen-space size of the point
        $v_size = size_vec.x / size_vec.w - fb_pos.x / fb_pos.w;
        v_edgewidth = ($v_size / a_size) * a_edgewidth;
    }
    else {
        // scaling == "fixed": marker is always the same number of pixels
        $v_size = a_size * u_px_scale;
        v_edgewidth = a_edgewidth * u_px_scale;
    }

    // gl_PointSize is the diameter
    gl_PointSize = $v_size + 4. * (v_edgewidth + 1.5 * u_antialias);

    if (u_spherical == true) {
        // similar as above for scaling, but in towards the screen direction
        // Get the framebuffer z direction relative to this sphere in visual coords
        vec4 z = $framebuffer_to_scene_or_visual(fb_pos + vec4(0, 0, big_float, 0));
        z = (z - pos);
        // Get the depth of the sphere in its middle point on the screen
        // size/2 because we need the radius, not the diameter
        vec4 depth_z_vec = $scene_or_visual_to_framebuffer(pos + normalize(z) * a_size / 2);
        v_depth_middle = depth_z_vec.z / depth_z_vec.w - fb_pos.z / fb_pos.w;
        // size ratio between aliased and non-aliased, needed for correct depth
        v_alias_ratio = gl_PointSize / $v_size;
    }
}
"""


_FRAGMENT_SHADER = """#version 120
uniform vec3 u_light_position;
uniform vec3 u_light_color;
uniform float u_light_ambient;
uniform float u_alpha;
uniform float u_antialias;
uniform bool u_spherical;

varying vec4 v_fg_color;
varying vec4 v_bg_color;
varying float v_edgewidth;
varying float v_depth_middle;
varying float v_alias_ratio;
varying float v_symbol;

void main()
{
    // Discard plotting marker body and edge if zero-size
    if ($v_size <= 0.)
        discard;

    float edgealphafactor = min(v_edgewidth, 1.0);

    float size = $v_size + 4.*(v_edgewidth + 1.5*u_antialias);
    // factor 6 for acute edge angles that need room as for star marker

    // The marker function needs to be linked with this shader
    float r = $marker(gl_PointCoord, size, int(v_symbol));

    // it takes into account an antialising layer
    // of size u_antialias inside the edge
    // r:
    // [-e/2-a, -e/2+a] antialising face-edge
    // [-e/2+a, e/2-a] core edge (center 0, diameter e-2a = 2t)
    // [e/2-a, e/2+a] antialising edge-background
    // use max because we don't want negative transition zone
    float t = max(0.5*v_edgewidth - u_antialias, 0);
    float d = abs(r) - t;

    if (r > 0.5*v_edgewidth + u_antialias)
    {
        // out of the marker (beyond the outer edge of the edge
        // including transition zone due to antialiasing)
        discard;
    }

    vec4 facecolor = v_bg_color;
    vec4 edgecolor = vec4(v_fg_color.rgb, edgealphafactor*v_fg_color.a);
    float depth_change = 0;

    // change color and depth if spherical mode is active
    if (u_spherical == true) {
        // multiply by alias_ratio and then clamp, so we're back to non-alias coordinates
        // and the aliasing ring has the same coordinates as the point just inside,
        // which is important for lighting
        vec2 texcoord = (gl_PointCoord * 2 - 1) * v_alias_ratio;
        float x = clamp(texcoord.x, -1, 1);
        float y = clamp(texcoord.y, -1, 1);
        float z = sqrt(clamp(1 - x*x - y*y, 0, 1));
        vec3 normal = vec3(x, y, z);

        // Diffuse color
        float diffuse = dot(u_light_position, normal);
        // clamp, because 0 < theta < pi/2
        diffuse = clamp(diffuse, 0, 1);
        vec3 diffuse_color = u_light_ambient + u_light_color * diffuse;

        // Specular color
        //   reflect light wrt normal for the reflected ray, then
        //   find the angle made with the eye
        vec3 eye = vec3(0, 0, -1);
        float specular = dot(reflect(u_light_position, normal), eye);
        specular = clamp(specular, 0, 1);
        // raise to the material's shininess, multiply with a
        // small factor for spread
        specular = pow(specular, 80);
        vec3 specular_color = u_light_color * specular;

        facecolor = vec4(facecolor.rgb * diffuse_color + specular_color, facecolor.a * u_alpha);
        edgecolor = vec4(edgecolor.rgb * diffuse_color + specular_color, edgecolor.a * u_alpha);
        // TODO: figure out why this 0.5 is needed, despite already having the radius, not diameter
        depth_change = -0.5 * z * v_depth_middle;
    }

    if (d < 0.0)
    {
        // inside the width of the edge
        // (core, out of the transition zone for antialiasing)
        gl_FragColor = edgecolor;
    }
    else if (v_edgewidth == 0.)
    {// no edge
        if (r > -u_antialias)
        {// outside
            float alpha = 1.0 + r/u_antialias;
            alpha = exp(-alpha*alpha);
            gl_FragColor = vec4(facecolor.rgb, alpha*facecolor.a);
        }
        else
        {// inside
            gl_FragColor = facecolor;
        }
    }
    else
    {// non-zero edge
        float alpha = d/u_antialias;
        alpha = exp(-alpha*alpha);
        if (r > 0.)
        {
            // outer part of the edge: fade out into the background...
            gl_FragColor = vec4(edgecolor.rgb, alpha*edgecolor.a);
        }
        else
        {
            // inner part of the edge: fade into the face color
            gl_FragColor = mix(facecolor, edgecolor, alpha);
        }
    }
    gl_FragDepth = gl_FragCoord.z + depth_change;
}
"""

disc = """
float r = length((pointcoord.xy - vec2(0.5,0.5))*size);
r -= $v_size/2.;
return r;
"""


arrow = """
const float sqrt2 = sqrt(2.);
float half_size = $v_size/2.;
float ady = abs(pointcoord.y -.5)*size;
float dx = (pointcoord.x -.5)*size;
float r1 = abs(dx) + ady - half_size;
float r2 = dx + 0.25*$v_size + ady - half_size;
float r = max(r1,-r2);
return r/sqrt2;//account for slanted edge and correct for width
"""


ring = """
float r1 = length((pointcoord.xy - vec2(0.5,0.5))*size) - $v_size/2.;
float r2 = length((pointcoord.xy - vec2(0.5,0.5))*size) - $v_size/4.;
float r = max(r1,-r2);
return r;
"""

clobber = """
const float sqrt3 = sqrt(3.);
const float PI = 3.14159265358979323846264;
const float t1 = -PI/2;
float circle_radius = 0.32 * $v_size;
float center_shift = 0.36/sqrt3 * $v_size;
//total size (horizontal) = 2*circle_radius + sqrt3*center_shirt = $v_size
vec2  c1 = vec2(cos(t1),sin(t1))*center_shift;
const float t2 = t1+2*PI/3;
vec2  c2 = vec2(cos(t2),sin(t2))*center_shift;
const float t3 = t2+2*PI/3;
vec2  c3 = vec2(cos(t3),sin(t3))*center_shift;
//xy is shift to center marker vertically
vec2 xy = (pointcoord.xy-vec2(0.5,0.5))*size + vec2(0.,-0.25*center_shift);
float r1 = length(xy - c1) - circle_radius;
float r2 = length(xy - c2) - circle_radius;
float r3 = length(xy - c3) - circle_radius;
float r = min(min(r1,r2),r3);
return r;
"""


square = """
float r = max(abs(pointcoord.x -.5)*size, abs(pointcoord.y -.5)*size);
r -= $v_size/2.;
return r;
"""

x = """
vec2 rotcoord = vec2((pointcoord.x + pointcoord.y - 1.) / sqrt(2.),
 (pointcoord.y - pointcoord.x) / sqrt(2.));
//vbar
float r1 = abs(rotcoord.x)*size - $v_size/6.;
float r2 = abs(rotcoord.y)*size - $v_size/2.;
float vbar = max(r1,r2);
//hbar
float r3 = abs(rotcoord.y)*size - $v_size/6.;
float r4 = abs(rotcoord.x)*size - $v_size/2.;
float hbar = max(r3,r4);
return min(vbar, hbar);
"""


diamond = """
float r = abs(pointcoord.x -.5)*size + abs(pointcoord.y -.5)*size;
r -= $v_size/2.;
return r / sqrt(2.);//account for slanted edge and correct for width
"""


vbar = """
float r1 = abs(pointcoord.x - 0.5)*size - $v_size/6.;
float r3 = abs(pointcoord.y - 0.5)*size - $v_size/2.;
float r = max(r1,r3);
return r;
"""

hbar = """
float r2 = abs(pointcoord.y - 0.5)*size - $v_size/6.;
float r3 = abs(pointcoord.x - 0.5)*size - $v_size/2.;
float r = max(r2,r3);
return r;
"""

cross = """
//vbar
float r1 = abs(pointcoord.x - 0.5)*size - $v_size/6.;
float r2 = abs(pointcoord.y - 0.5)*size - $v_size/2.;
float vbar = max(r1,r2);
//hbar
float r3 = abs(pointcoord.y - 0.5)*size - $v_size/6.;
float r4 = abs(pointcoord.x - 0.5)*size - $v_size/2.;
float hbar = max(r3,r4);
return min(vbar, hbar);
"""


tailed_arrow = """
const float sqrt2 = sqrt(2.);
float half_size = $v_size/2.;
float ady = abs(pointcoord.y -.5)*size;
float dx = (pointcoord.x -.5)*size;
float r1 = abs(dx) + ady - half_size;
float r2 = dx + 0.25*$v_size + ady - half_size;
float arrow = max(r1,-r2);
//hbar
float upper_bottom_edges = ady - $v_size/8./sqrt2;
float left_edge = -dx - half_size;
float right_edge = dx + ady - half_size;
float hbar = max(upper_bottom_edges, left_edge);
float scale = 1.; //rescaling for slanted edge
if (right_edge >= hbar)
{
hbar = right_edge;
scale = sqrt2;
}
if (arrow <= hbar)
{
return arrow / sqrt2;//account for slanted edge and correct for width
}
else
{
return hbar / scale;
}
"""


triangle_up = """
float height = $v_size*sqrt(3.)/2.;
float bottom = ((pointcoord.y - 0.5)*size - height/2.);
float rotated_y = sqrt(3.)/2. * (pointcoord.x - 0.5) * size
  - 0.5 * ((pointcoord.y - 0.5)*size - height/6.) + height/6.;
float right_edge = (rotated_y - height/2.);
float cc_rotated_y = -sqrt(3.)/2. * (pointcoord.x - 0.5)*size
  - 0.5 * ((pointcoord.y - 0.5)*size - height/6.) + height/6.;
float left_edge = (cc_rotated_y - height/2.);
float slanted_edges = max(right_edge, left_edge);
return max(slanted_edges, bottom);
"""

triangle_down = """
float height = -$v_size*sqrt(3.)/2.;
float bottom = -((pointcoord.y - 0.5)*size - height/2.);
float rotated_y = sqrt(3.)/2. * (pointcoord.x - 0.5) * size
- 0.5 * ((pointcoord.y - 0.5)*size - height/6.) + height/6.;
float right_edge = -(rotated_y - height/2.);
float cc_rotated_y = -sqrt(3.)/2. * (pointcoord.x - 0.5)*size
- 0.5 * ((pointcoord.y - 0.5)*size - height/6.) + height/6.;
float left_edge = -(cc_rotated_y - height/2.);
float slanted_edges = max(right_edge, left_edge);
return max(slanted_edges, bottom);
"""


star = """
float star = -10000.;
const float PI2_5 = 3.141592653589*2./5.;
const float PI2_20 = 3.141592653589/10.;  //PI*2/20
// downwards shift to that the marker center is halfway vertically
// between the top of the upward spike (y = -v_size/2.)
// and the bottom of one of two downward spikes
// (y = +v_size/2.*cos(2.*pi/10.) approx +v_size/2.*0.8)
// center is at -v_size/2.*0.1
float shift_y = -0.05*$v_size;
// first spike upwards,
// rotate spike by 72 deg four times to complete the star
for (int i = 0; i <= 4; i++)
{
//if not the first spike, rotate it upwards
float x = (pointcoord.x - 0.5)*size;
float y = (pointcoord.y - 0.5)*size;
float spike_rot_angle = float(i) * PI2_5;
float cosangle = cos(spike_rot_angle);
float sinangle = sin(spike_rot_angle);
float spike_x = x;
float spike_y = y + shift_y;
if (i > 0)
{
spike_x = cosangle * x - sinangle * (y + shift_y);
spike_y = sinangle * x + cosangle * (y + shift_y);
}
// in the frame where the spike is upwards:
// rotate 18 deg the zone x < 0 around the top of the star
// (point whose coords are -s/2, 0 where s is the size of the marker)
// compute y coordonates as well because
// we do a second rotation to put the spike at its final position
float rot_center_y = -$v_size/2.;
float rot18x = cos(PI2_20) * spike_x
- sin(PI2_20) * (spike_y - rot_center_y);
//rotate -18 deg the zone x > 0 arount the top of the star
float rot_18x = cos(PI2_20) * spike_x
+ sin(PI2_20) * (spike_y - rot_center_y);
float bottom = spike_y - $v_size/10.;
// max(left edge, right edge)
float spike = max(bottom, max(rot18x, -rot_18x));
if (i == 0)
{// first spike, skip the rotation
star = spike;
}
else // i > 0
{
star = min(star, spike);
}
}
return star;
"""

cross_lines = """
//vbar
float r1 = abs(pointcoord.x - 0.5)*size;
float r2 = abs(pointcoord.y - 0.5)*size - $v_size/2;
float vbar = max(r1,r2);
//hbar
float r3 = abs(pointcoord.y - 0.5)*size;
float r4 = abs(pointcoord.x - 0.5)*size - $v_size/2;
float hbar = max(r3,r4);
return min(vbar, hbar);
"""

symbol_shaders = {
    'disc': disc,
    'arrow': arrow,
    'ring': ring,
    'clobber': clobber,
    'square': square,
    'x': x,
    'diamond': diamond,
    'vbar': vbar,
    'hbar': hbar,
    'cross': cross,
    'tailed_arrow': tailed_arrow,
    'triangle_up': triangle_up,
    'triangle_down': triangle_down,
    'star': star,
    'cross_lines': cross_lines,
}

# combine all the symbol shaders in a big if-else statement
symbol_func = f"""
float symbol(vec2 pointcoord, float size, int symbol) {{
   {' else'.join(
    f''' if (symbol == {i}) {{
        // {name}
        {shader}
    }}'''
    for i, (name, shader) in enumerate(symbol_shaders.items())
    )}
}}"""

# aliases
symbol_aliases = {
    'o': 'disc',
    '+': 'cross',
    '++': 'cross_lines',
    's': 'square',
    '-': 'hbar',
    '|': 'vbar',
    '->': 'tailed_arrow',
    '>': 'arrow',
    '^': 'triangle_up',
    'v': 'triangle_down',
    '*': 'star',
}

symbol_shader_values = {name: i for i, name in enumerate(symbol_shaders)}
symbol_shader_values.update({
    **{alias: symbol_shader_values[name] for alias, name in symbol_aliases.items()},
})


class MarkersVisual(Visual):
    """Visual displaying marker symbols.

    Parameters
    ----------
    pos : array
        The array of locations to display each symbol.
    size : float or array
        The symbol size in screen (or data, if scaling is on) px.
    edge_width : float or array or None
        The width of the symbol outline in screen (or data, if scaling is on) px.
        Defaults to 1.0 if None or not provided and ``edge_width_rel`` is not
        provided.
    edge_width_rel : float or array or None
        The width as a fraction of marker size. Can not be specified along with
        edge_width. A ValueError will be raised if both are provided.
    edge_color : Color | ColorArray
        The color used to draw each symbol outline.
    face_color : Color | ColorArray
        The color used to draw each symbol interior.
    symbol : str or array
        The style of symbol used to draw each marker (see Notes).
    scaling : str | bool
        Scaling method of individual markers. If set to "fixed" (default) then
        no scaling is done and markers will always be the same number of
        pixels on the screen. If set to "scene" then the chain of transforms
        from the Visual's transform to the transform mapping to the OpenGL
        framebuffer are used to scaling the marker. This has the effect of the
        marker staying the same size in the "scene" coordinate space and
        changing size as the visualization is zoomed in and out. If set to
        "visual" the marker is scaled only using the transform of the Visual
        and not the rest of the scene/camera. This means that something like
        a camera changing the view will not affect the size of the marker, but
        the user can still scale it using the Visual's transform. For
        backwards compatibility this can be set to the boolean ``False`` for
        "fixed" or ``True`` for "scene".
    alpha : float
        The opacity level of the visual.
    antialias : float
        Antialiasing amount (in px).
    spherical : bool
        Whether to add a spherical effect on the marker using lighting.
    light_color : Color | ColorArray
        The color of the light used to create the spherical effect.
    light_position : array
        The coordinates of the light used to create the spherical effect.
    light_ambient : float
        The amount of ambient light used to create the spherical effect.

    Notes
    -----
    Allowed style strings are: disc, arrow, ring, clobber, square, diamond,
    vbar, hbar, cross, tailed_arrow, x, triangle_up, triangle_down,
    and star.
    """

    _shaders = {
        'vertex': _VERTEX_SHADER,
        'fragment': _FRAGMENT_SHADER,
    }
    _symbol_shader_values = symbol_shader_values
    _symbol_shader = symbol_func

    def __init__(self, scaling="fixed", alpha=1, antialias=1, spherical=False,
                 light_color='white', light_position=(1, -1, 1), light_ambient=0.3, **kwargs):
        self._vbo = VertexBuffer()
        self._data = None
        self._scaling = "fixed"

        Visual.__init__(self, vcode=self._shaders['vertex'], fcode=self._shaders['fragment'])
        self._symbol_func = Function(self._symbol_shader)
        self.shared_program.frag['marker'] = self._symbol_func
        self._v_size_var = Variable('varying float v_size')
        self.shared_program.vert['v_size'] = self._v_size_var
        self.shared_program.frag['v_size'] = self._v_size_var
        self._symbol_func['v_size'] = self._v_size_var

        self.set_gl_state(depth_test=True, blend=True,
                          blend_func=('src_alpha', 'one_minus_src_alpha'))
        self._draw_mode = 'points'

        self.events.add(data_updated=Event)

        if len(kwargs) > 0:
            self.set_data(**kwargs)

        self.scaling = scaling
        self.antialias = antialias
        self.light_color = light_color
        self.light_position = light_position
        self.light_ambient = light_ambient
        self.alpha = alpha
        self.spherical = spherical

        self.freeze()

    def set_data(self, pos=None, size=10., edge_width=None, edge_width_rel=None,
                 edge_color='black', face_color='white',
                 symbol='o'):
        """Set the data used to display this visual.

        Parameters
        ----------
        pos : array
            The array of locations to display each symbol.
        size : float or array
            The symbol size in screen (or data, if scaling is on) px.
        edge_width : float or array or None
            The width of the symbol outline in screen (or data, if scaling is on) px.
            Defaults to 1.0 if None or not provided and ``edge_width_rel`` is not
        provided.
        edge_width_rel : float or array or None
            The width as a fraction of marker size. Can not be specified along with
            edge_width. A ValueError will be raised if both are provided.
        edge_color : Color | ColorArray
            The color used to draw each symbol outline.
        face_color : Color | ColorArray
            The color used to draw each symbol interior.
        symbol : str or array
            The style of symbol used to draw each marker (see Notes).
        """
        if edge_width is not None and edge_width_rel is not None:
            raise ValueError("either edge_width or edge_width_rel "
                             "should be provided, not both")
        elif edge_width is None and edge_width_rel is None:
            edge_width = 1.0

        if edge_width is not None:
            edge_width = np.asarray(edge_width)
            if np.any(edge_width < 0):
                raise ValueError('edge_width cannot be negative')
        else:
            edge_width_rel = np.asarray(edge_width_rel)
            if np.any(edge_width_rel < 0):
                raise ValueError('edge_width_rel cannot be negative')

        edge_color = ColorArray(edge_color).rgba
        if len(edge_color) == 1:
            edge_color = edge_color[0]

        face_color = ColorArray(face_color).rgba
        if len(face_color) == 1:
            face_color = face_color[0]

        if pos is not None:
            assert (isinstance(pos, np.ndarray) and
                    pos.ndim == 2 and pos.shape[1] in (2, 3))

            n = len(pos)
            data = np.zeros(n, dtype=[('a_position', np.float32, 3),
                                      ('a_fg_color', np.float32, 4),
                                      ('a_bg_color', np.float32, 4),
                                      ('a_size', np.float32),
                                      ('a_edgewidth', np.float32),
                                      ('a_symbol', np.float32)])
            data['a_fg_color'] = edge_color
            data['a_bg_color'] = face_color
            if edge_width is not None:
                data['a_edgewidth'] = edge_width
            else:
                data['a_edgewidth'] = size * edge_width_rel
            data['a_position'][:, :pos.shape[1]] = pos
            data['a_size'] = size

            if symbol is None:
                data["a_symbol"] = np.array(None)
            else:
                if isinstance(symbol, str):
                    symbol = [symbol]
                try:
                    data['a_symbol'] = np.array([self._symbol_shader_values[x] for x in symbol])
                except KeyError:
                    raise ValueError(f'symbols must one of {self.symbols}')

            self._data = data
            self._vbo.set_data(data)
            self.shared_program.bind(self._vbo)

        self.events.data_updated()
        self.update()

    @property
    def symbols(self):
        return list(self._symbol_shader_values)

    @property
    def symbol(self):
        if self._data is None:
            return None
        value_to_symbol = {v: k for k, v in self._symbol_shader_values.items()}
        return np.vectorize(value_to_symbol.get)(self._data['a_symbol'])

    @symbol.setter
    def symbol(self, value):
        if self._data is not None:
            rec_to_kw = {
                'a_position': 'pos',
                'a_fg_color': 'edge_color',
                'a_bg_color': 'face_color',
                'a_size': 'size',
                'a_edgewidth': 'edge_width',
                'a_symbol': 'symbol',
            }
            kwargs = {kw: self._data[rec] for rec, kw in rec_to_kw.items()}
        else:
            kwargs = {}
        kwargs['symbol'] = value
        self.set_data(**kwargs)

    @property
    def scaling(self):
        """
        If set to True, marker scales when rezooming.
        """
        return self._scaling

    @scaling.setter
    def scaling(self, value):
        scaling_modes = {
            False: "fixed",
            True: "scene",
            "fixed": "fixed",
            "scene": "scene",
            "visual": "visual",
        }
        if value not in scaling_modes:
            possible_options = ", ".join(repr(opt) for opt in scaling_modes)
            raise ValueError(f"Unknown scaling option {value!r}, expected one of: {possible_options}")
        self._scaling = scaling_modes[value]
        self.shared_program['u_scaling'] = self._scaling != "fixed"
        self.update()

    @property
    def antialias(self):
        """
        Antialiasing amount (in px).
        """
        return self._antialias

    @antialias.setter
    def antialias(self, value):
        value = float(value)
        self.shared_program['u_antialias'] = value
        self._antialias = value
        self.update()

    @property
    def light_position(self):
        """
        The coordinates of the light used to create the spherical effect.
        """
        return self._light_position

    @light_position.setter
    def light_position(self, value):
        value = np.array(value)
        self.shared_program['u_light_position'] = value / np.linalg.norm(value)
        self._light_position = value
        self.update()

    @property
    def light_ambient(self):
        """
        The amount of ambient light used to create the spherical effect.
        """
        return self._light_ambient

    @light_ambient.setter
    def light_ambient(self, value):
        self.shared_program['u_light_ambient'] = value
        self._light_ambient = value
        self.update()

    @property
    def light_color(self):
        """
        The color of the light used to create the spherical effect.
        """
        return self._light_color

    @light_color.setter
    def light_color(self, value):
        self.shared_program['u_light_color'] = ColorArray(value).rgb
        self._light_color = value
        self.update()

    @property
    def alpha(self):
        """
        The opacity level of the visual.
        """
        return self._alpha

    @alpha.setter
    def alpha(self, value):
        self.shared_program['u_alpha'] = value
        self._alpha = value
        self.update()

    @property
    def spherical(self):
        """
        Whether to add a spherical effect on the marker using lighting.
        """
        return self._spherical

    @spherical.setter
    def spherical(self, value):
        self.shared_program['u_spherical'] = value
        self._spherical = value
        self.update()

    def _prepare_transforms(self, view):
        view.view_program.vert['visual_to_framebuffer'] = view.get_transform('visual', 'framebuffer')
        view.view_program.vert['framebuffer_to_render'] = view.get_transform('framebuffer', 'render')
        scaling = view._scaling if view._scaling != "fixed" else "scene"
        view.view_program.vert['framebuffer_to_scene_or_visual'] = view.get_transform('framebuffer', scaling)
        view.view_program.vert['scene_or_visual_to_framebuffer'] = view.get_transform(scaling, 'framebuffer')

    def _prepare_draw(self, view):
        if self._data is None:
            return False
        view.view_program['u_px_scale'] = view.transforms.pixel_scale

    def _compute_bounds(self, axis, view):
        pos = self._data['a_position']
        if pos is None:
            return None
        if pos.shape[1] > axis:
            return (pos[:, axis].min(), pos[:, axis].max())
        else:
            return (0, 0)