1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
import numpy as np
from .image import ImageVisual
from ..util.fourier import stft, fft_freqs
class SpectrogramVisual(ImageVisual):
"""Calculate and show a spectrogram
Parameters
----------
x : array-like
1D signal to operate on. ``If len(x) < n_fft``, x will be
zero-padded to length ``n_fft``.
n_fft : int
Number of FFT points. Much faster for powers of two.
step : int | None
Step size between calculations. If None, ``n_fft // 2``
will be used.
fs : float
The sample rate of the data.
window : str | None
Window function to use. Can be ``'hann'`` for Hann window, or None
for no windowing.
normalize : bool
Normalization of spectrogram values across frequencies.
color_scale : {'linear', 'log'}
Scale to apply to the result of the STFT.
``'log'`` will use ``10 * log10(power)``.
cmap : str
Colormap name.
clim : str | tuple
Colormap limits. Should be ``'auto'`` or a two-element tuple of
min and max values.
"""
def __init__(self, x=None, n_fft=256, step=None, fs=1., window='hann',
normalize=False, color_scale='log', cmap='cubehelix',
clim='auto'):
self._x = np.asarray(x)
self._n_fft = int(n_fft)
self._step = step
self._fs = float(fs)
self._window = window
self._normalize = normalize
self._color_scale = color_scale
if clim == 'auto':
self._clim_auto = True
else:
self._clim_auto = False
if not isinstance(self._color_scale, str) or \
self._color_scale not in ('log', 'linear'):
raise ValueError('color_scale must be "linear" or "log"')
data = self._calculate_spectrogram()
super(SpectrogramVisual, self).__init__(data, clim=clim, cmap=cmap)
@property
def freqs(self):
"""The spectrogram frequencies"""
return fft_freqs(self._n_fft, self._fs)
@property
def x(self):
"""The original signal"""
return self._x
@x.setter
def x(self, x):
self._x = np.asarray(x)
self._update_image()
@property
def n_fft(self):
"""The length of fft window"""
return self._n_fft
@n_fft.setter
def n_fft(self, n_fft):
self._n_fft = int(n_fft)
self._update_image()
@property
def step(self):
"""The step of fft window"""
if self._step is None:
return self._n_fft // 2
else:
return self._step
@step.setter
def step(self, step):
self._step = step
self._update_image()
@property
def fs(self):
"""The sampling frequency"""
return self._fs
@fs.setter
def fs(self, fs):
self._fs = fs
self._update_image()
@property
def window(self):
"""The used window function"""
return self._window
@window.setter
def window(self, window):
self._window = window
self._update_image()
@property
def color_scale(self):
"""The color scale"""
return self._color_scale
@color_scale.setter
def color_scale(self, color_scale):
if not isinstance(color_scale, str) or \
color_scale not in ('log', 'linear'):
raise ValueError('color_scale must be "linear" or "log"')
self._color_scale = color_scale
self._update_image()
@property
def normalize(self):
"""The normalization setting"""
return self._normalize
@normalize.setter
def normalize(self, normalize):
self._normalize = normalize
self._update_image()
def _calculate_spectrogram(self):
if self._x is not None:
x = self._x
nan_mean = np.nanmean(x)
idx = np.isnan(x)
x[idx] = nan_mean
data = stft(x, self._n_fft, self._step, self._fs, self._window)
data = np.abs(data)
data = 20 * np.log10(data) if self._color_scale == 'log' else data
if self._normalize:
for i in range(data.shape[0]):
data[i, :] -= np.mean(data[i, :])
data[i, :] /= np.std(data[i, :])
return data.astype(np.float32) # ImageVisual will warn if 64-bit
else:
return None
def _update_image(self):
data = self._calculate_spectrogram()
self.set_data(data)
self.update()
if self._clim_auto:
self.clim = 'auto'
|