1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
from __future__ import division
from .mesh import MeshVisual
import numpy as np
from numpy.linalg import norm
from ..util.transforms import rotate
from ..color import ColorArray
import collections
class TubeVisual(MeshVisual):
"""Displays a tube around a piecewise-linear path.
The tube mesh is corrected following its Frenet curvature and
torsion such that it varies smoothly along the curve, including if
the tube is closed.
Parameters
----------
points : ndarray
An array of (x, y, z) points describing the path along which the
tube will be extruded.
radius : float | ndarray
The radius of the tube. Use array of floats as input to set radii of
points individually. Defaults to 1.0.
closed : bool
Whether the tube should be closed, joining the last point to the
first. Defaults to False.
color : Color | ColorArray
The color(s) to use when drawing the tube. The same color is
applied to each vertex of the mesh surrounding each point of
the line. If the input is a ColorArray, the argument will be
cycled; for instance if 'red' is passed then the entire tube
will be red, or if ['green', 'blue'] is passed then the points
will alternate between these colours. Defaults to 'purple'.
tube_points : int
The number of points in the circle-approximating polygon of the
tube's cross section. Defaults to 8.
shading : str | None
Same as for the `MeshVisual` class. Defaults to 'smooth'.
vertex_colors: ndarray | None
Same as for the `MeshVisual` class.
face_colors: ndarray | None
Same as for the `MeshVisual` class.
mode : str
Same as for the `MeshVisual` class. Defaults to 'triangles'.
"""
def __init__(self, points, radius=1.0,
closed=False,
color='purple',
tube_points=8,
shading='smooth',
vertex_colors=None,
face_colors=None,
mode='triangles'):
# make sure we are working with floats
points = np.array(points).astype(float)
tangents, normals, binormals = _frenet_frames(points, closed)
segments = len(points) - 1
# if single radius, convert to list of radii
if not isinstance(radius, collections.abc.Iterable):
radius = [radius] * len(points)
elif len(radius) != len(points):
raise ValueError('Length of radii list must match points.')
# get the positions of each vertex
grid = np.zeros((len(points), tube_points, 3))
for i in range(len(points)):
pos = points[i]
normal = normals[i]
binormal = binormals[i]
r = radius[i]
# Add a vertex for each point on the circle
v = np.arange(tube_points,
dtype=np.float32) / tube_points * 2 * np.pi
cx = -1. * r * np.cos(v)
cy = r * np.sin(v)
grid[i] = (pos + cx[:, np.newaxis]*normal +
cy[:, np.newaxis]*binormal)
# construct the mesh
indices = []
for i in range(segments):
for j in range(tube_points):
ip = (i+1) % segments if closed else i+1
jp = (j+1) % tube_points
index_a = i*tube_points + j
index_b = ip*tube_points + j
index_c = ip*tube_points + jp
index_d = i*tube_points + jp
indices.append([index_a, index_b, index_d])
indices.append([index_b, index_c, index_d])
vertices = grid.reshape(grid.shape[0]*grid.shape[1], 3)
color = ColorArray(color)
if vertex_colors is None:
point_colors = np.resize(color.rgba,
(len(points), 4))
vertex_colors = np.repeat(point_colors, tube_points, axis=0)
indices = np.array(indices, dtype=np.uint32)
MeshVisual.__init__(self, vertices, indices,
vertex_colors=vertex_colors,
face_colors=face_colors,
shading=shading,
mode=mode)
def _frenet_frames(points, closed):
"""Calculates and returns the tangents, normals and binormals for
the tube.
"""
tangents = np.zeros((len(points), 3))
normals = np.zeros((len(points), 3))
epsilon = 0.0001
# Compute tangent vectors for each segment
tangents = np.roll(points, -1, axis=0) - np.roll(points, 1, axis=0)
if not closed:
tangents[0] = points[1] - points[0]
tangents[-1] = points[-1] - points[-2]
mags = np.sqrt(np.sum(tangents * tangents, axis=1))
tangents /= mags[:, np.newaxis]
# Get initial normal and binormal
t = np.abs(tangents[0])
smallest = np.argmin(t)
normal = np.zeros(3)
normal[smallest] = 1.
vec = np.cross(tangents[0], normal)
normals[0] = np.cross(tangents[0], vec)
# Compute normal and binormal vectors along the path
for i in range(1, len(points)):
normals[i] = normals[i-1]
vec = np.cross(tangents[i-1], tangents[i])
if norm(vec) > epsilon:
vec /= norm(vec)
theta = np.arccos(np.clip(tangents[i-1].dot(tangents[i]), -1, 1))
normals[i] = rotate(-np.degrees(theta),
vec)[:3, :3].dot(normals[i])
if closed:
theta = np.arccos(np.clip(normals[0].dot(normals[-1]), -1, 1))
theta /= len(points) - 1
if tangents[0].dot(np.cross(normals[0], normals[-1])) > 0:
theta *= -1.
for i in range(1, len(points)):
normals[i] = rotate(-np.degrees(theta*i),
tangents[i])[:3, :3].dot(normals[i])
binormals = np.cross(tangents, normals)
return tangents, normals, binormals
|