1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
|
# -*- coding: utf-8 -*-
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
"""
About this technique
--------------------
In Python, we define the six faces of a cuboid to draw, as well as
texture cooridnates corresponding with the vertices of the cuboid.
The back faces of the cuboid are drawn (and front faces are culled)
because only the back faces are visible when the camera is inside the
volume.
In the vertex shader, we intersect the view ray with the near and far
clipping planes. In the fragment shader, we use these two points to
compute the ray direction and then compute the position of the front
cuboid surface (or near clipping plane) along the view ray.
Next we calculate the number of steps to walk from the front surface
to the back surface and iterate over these positions in a for-loop.
At each iteration, the fragment color or other voxel information is
updated depending on the selected rendering method.
It is important for the texture interpolation is 'linear' for most volumes,
since with 'nearest' the result can look very ugly; however for volumes with
discrete data 'nearest' is sometimes appropriate. The wrapping should be
clamp_to_edge to avoid artifacts when the ray takes a small step outside the
volume.
The ray direction is established by mapping the vertex to the document
coordinate frame, adjusting z to +/-1, and mapping the coordinate back.
The ray is expressed in coordinates local to the volume (i.e. texture
coordinates).
"""
from __future__ import annotations
from typing import Optional
from functools import lru_cache
import warnings
from ._scalable_textures import CPUScaledTexture3D, GPUScaledTextured3D, Texture2D
from ..gloo import VertexBuffer, IndexBuffer
from . import Visual
from .shaders import Function
from ..color import get_colormap
from ..io import load_spatial_filters
import numpy as np
# todo: implement more render methods (port from visvis)
# todo: allow anisotropic data
# todo: what to do about lighting? ambi/diffuse/spec/shinynes on each visual?
_VERTEX_SHADER = """
attribute vec3 a_position;
uniform vec3 u_shape;
varying vec3 v_position;
varying vec4 v_nearpos;
varying vec4 v_farpos;
void main() {
v_position = a_position;
// Project local vertex coordinate to camera position. Then do a step
// backward (in cam coords) and project back. Voila, we get our ray vector.
vec4 pos_in_cam = $viewtransformf(vec4(v_position, 1));
// intersection of ray and near clipping plane (z = -1 in clip coords)
pos_in_cam.z = -pos_in_cam.w;
v_nearpos = $viewtransformi(pos_in_cam);
// intersection of ray and far clipping plane (z = +1 in clip coords)
pos_in_cam.z = pos_in_cam.w;
v_farpos = $viewtransformi(pos_in_cam);
gl_Position = $transform(vec4(v_position, 1.0));
}
""" # noqa
_FRAGMENT_SHADER = """
// uniforms
uniform $sampler_type u_volumetex;
uniform vec3 u_shape;
uniform vec2 clim;
uniform float gamma;
uniform float u_threshold;
uniform float u_attenuation;
uniform float u_relative_step_size;
uniform float u_mip_cutoff;
uniform float u_minip_cutoff;
//varyings
varying vec3 v_position;
varying vec4 v_nearpos;
varying vec4 v_farpos;
// uniforms for lighting. Hard coded until we figure out how to do lights
const vec4 u_ambient = vec4(0.2, 0.2, 0.2, 1.0);
const vec4 u_diffuse = vec4(0.8, 0.2, 0.2, 1.0);
const vec4 u_specular = vec4(1.0, 1.0, 1.0, 1.0);
const float u_shininess = 40.0;
// uniforms for plane definition. Defined in data coordinates.
uniform vec3 u_plane_normal;
uniform vec3 u_plane_position;
uniform float u_plane_thickness;
//varying vec3 lightDirs[1];
// global holding view direction in local coordinates
vec3 view_ray;
float rand(vec2 co)
{
// Create a pseudo-random number between 0 and 1.
// http://stackoverflow.com/questions/4200224
return fract(sin(dot(co.xy ,vec2(12.9898, 78.233))) * 43758.5453);
}
float colorToVal(vec4 color1)
{
return color1.r; // todo: why did I have this abstraction in visvis?
}
vec4 applyColormap(float data) {
data = clamp(data, min(clim.x, clim.y), max(clim.x, clim.y));
data = (data - clim.x) / (clim.y - clim.x);
vec4 color = $cmap(pow(data, gamma));
return color;
}
vec4 calculateColor(vec4 betterColor, vec3 loc, vec3 step)
{
// Calculate color by incorporating lighting
vec4 color1;
vec4 color2;
// View direction
vec3 V = normalize(view_ray);
// calculate normal vector from gradient
vec3 N; // normal
color1 = $get_data(loc+vec3(-step[0],0.0,0.0) );
color2 = $get_data(loc+vec3(step[0],0.0,0.0) );
N[0] = colorToVal(color1) - colorToVal(color2);
betterColor = max(max(color1, color2),betterColor);
color1 = $get_data(loc+vec3(0.0,-step[1],0.0) );
color2 = $get_data(loc+vec3(0.0,step[1],0.0) );
N[1] = colorToVal(color1) - colorToVal(color2);
betterColor = max(max(color1, color2),betterColor);
color1 = $get_data(loc+vec3(0.0,0.0,-step[2]) );
color2 = $get_data(loc+vec3(0.0,0.0,step[2]) );
N[2] = colorToVal(color1) - colorToVal(color2);
betterColor = max(max(color1, color2),betterColor);
float gm = length(N); // gradient magnitude
N = normalize(N);
// Flip normal so it points towards viewer
float Nselect = float(dot(N,V) > 0.0);
N = (2.0*Nselect - 1.0) * N; // == Nselect * N - (1.0-Nselect)*N;
// Get color of the texture (albeido)
color1 = betterColor;
color2 = color1;
// todo: parametrise color1_to_color2
// Init colors
vec4 ambient_color = vec4(0.0, 0.0, 0.0, 0.0);
vec4 diffuse_color = vec4(0.0, 0.0, 0.0, 0.0);
vec4 specular_color = vec4(0.0, 0.0, 0.0, 0.0);
vec4 final_color;
// todo: allow multiple light, define lights on viewvox or subscene
int nlights = 1;
for (int i=0; i<nlights; i++)
{
// Get light direction (make sure to prevent zero devision)
vec3 L = normalize(view_ray); //lightDirs[i];
float lightEnabled = float( length(L) > 0.0 );
L = normalize(L+(1.0-lightEnabled));
// Calculate lighting properties
float lambertTerm = clamp( dot(N,L), 0.0, 1.0 );
vec3 H = normalize(L+V); // Halfway vector
float specularTerm = pow( max(dot(H,N),0.0), u_shininess);
// Calculate mask
float mask1 = lightEnabled;
// Calculate colors
ambient_color += mask1 * u_ambient; // * gl_LightSource[i].ambient;
diffuse_color += mask1 * lambertTerm;
specular_color += mask1 * specularTerm * u_specular;
}
// Calculate final color by componing different components
final_color = color2 * ( ambient_color + diffuse_color) + specular_color;
final_color.a = color2.a;
// Done
return final_color;
}
vec3 intersectLinePlane(vec3 linePosition,
vec3 lineVector,
vec3 planePosition,
vec3 planeNormal) {
// function to find the intersection between a line and a plane
// line is defined by position and vector
// plane is defined by position and normal vector
// https://en.wikipedia.org/wiki/Line%E2%80%93plane_intersection
// find scale factor for line vector
float scaleFactor = dot(planePosition - linePosition, planeNormal) /
dot(lineVector, planeNormal);
// calculate intersection
return linePosition + ( scaleFactor * lineVector );
}
// for some reason, this has to be the last function in order for the
// filters to be inserted in the correct place...
void main() {
vec3 farpos = v_farpos.xyz / v_farpos.w;
vec3 nearpos = v_nearpos.xyz / v_nearpos.w;
// Calculate unit vector pointing in the view direction through this
// fragment.
view_ray = normalize(farpos.xyz - nearpos.xyz);
// Variables to keep track of where to set the frag depth.
// frag_depth_point is in data coordinates.
vec3 frag_depth_point;
// Set up the ray casting
// This snippet must define three variables:
// vec3 start_loc - the starting location of the ray in texture coordinates
// vec3 step - the step vector in texture coordinates
// int nsteps - the number of steps to make through the texture
$raycasting_setup
// For testing: show the number of steps. This helps to establish
// whether the rays are correctly oriented
//gl_FragColor = vec4(0.0, f_nsteps / 3.0 / u_shape.x, 1.0, 1.0);
//return;
$before_loop
// This outer loop seems necessary on some systems for large
// datasets. Ugly, but it works ...
vec3 loc = start_loc;
int iter = 0;
// keep track if the texture is ever sampled; if not, fragment will be discarded
// this allows us to discard fragments that only traverse clipped parts of the texture
bool texture_sampled = false;
while (iter < nsteps) {
for (iter=iter; iter<nsteps; iter++)
{
// Only sample volume if loc is not clipped by clipping planes
float distance_from_clip = $clip_with_planes(loc, u_shape);
if (distance_from_clip >= 0)
{
// Get sample color
vec4 color = $get_data(loc);
float val = color.r;
texture_sampled = true;
$in_loop
}
// Advance location deeper into the volume
loc += step;
}
}
if (!texture_sampled)
discard;
$after_loop
// set frag depth
vec4 frag_depth_vector = vec4(frag_depth_point, 1);
vec4 iproj = $viewtransformf(frag_depth_vector);
iproj.z /= iproj.w;
gl_FragDepth = (iproj.z+1.0)/2.0;
}
""" # noqa
_RAYCASTING_SETUP_VOLUME = """
// Compute the distance to the front surface or near clipping plane
float distance = dot(nearpos-v_position, view_ray);
distance = max(distance, min((-0.5 - v_position.x) / view_ray.x,
(u_shape.x - 0.5 - v_position.x) / view_ray.x));
distance = max(distance, min((-0.5 - v_position.y) / view_ray.y,
(u_shape.y - 0.5 - v_position.y) / view_ray.y));
distance = max(distance, min((-0.5 - v_position.z) / view_ray.z,
(u_shape.z - 0.5 - v_position.z) / view_ray.z));
// Now we have the starting position on the front surface
vec3 front = v_position + view_ray * distance;
// Decide how many steps to take
int nsteps = int(-distance / u_relative_step_size + 0.5);
float f_nsteps = float(nsteps);
if( nsteps < 1 )
discard;
// Get starting location and step vector in texture coordinates
vec3 step = ((v_position - front) / u_shape) / f_nsteps;
// 0.5 offset needed to get back to correct texture coordinates (vispy#2239)
vec3 start_loc = (front + 0.5) / u_shape;
// set frag depth to the cube face; this can be overridden by projection snippets
frag_depth_point = front;
"""
_RAYCASTING_SETUP_PLANE = """
// find intersection of view ray with plane in data coordinates
// 0.5 offset needed to get back to correct texture coordinates (vispy#2239)
vec3 intersection = intersectLinePlane(v_position.xyz, view_ray,
u_plane_position, u_plane_normal);
// and texture coordinates
vec3 intersection_tex = (intersection + 0.5) / u_shape;
// discard if intersection not in texture
float out_of_bounds = 0;
out_of_bounds += float(intersection_tex.x > 1);
out_of_bounds += float(intersection_tex.x < 0);
out_of_bounds += float(intersection_tex.y > 1);
out_of_bounds += float(intersection_tex.y < 0);
out_of_bounds += float(intersection_tex.z > 1);
out_of_bounds += float(intersection_tex.z < 0);
if (out_of_bounds > 0)
discard;
// Decide how many steps to take
int nsteps = int(u_plane_thickness / u_relative_step_size + 0.5);
float f_nsteps = float(nsteps);
if( nsteps < 1 )
discard;
// Get step vector and starting location in texture coordinates
// step vector is along plane normal
vec3 N = normalize(u_plane_normal);
vec3 step = N / u_shape;
vec3 start_loc = intersection_tex - ((step * f_nsteps) / 2);
// Ensure that frag depth value will be set to plane intersection
frag_depth_point = intersection;
"""
_MIP_SNIPPETS = dict(
before_loop="""
float maxval = u_mip_cutoff; // The maximum encountered value
int maxi = -1; // Where the maximum value was encountered
""",
in_loop="""
if ( val > maxval ) {
maxval = val;
maxi = iter;
if ( maxval >= clim.y ) {
// stop if no chance of finding a higher maxval
iter = nsteps;
}
}
""",
after_loop="""
// Refine search for max value, but only if anything was found
if ( maxi > -1 ) {
// Calculate starting location of ray for sampling
vec3 start_loc_refine = start_loc + step * (float(maxi) - 0.5);
loc = start_loc_refine;
// Variables to keep track of current value and where max was encountered
vec3 max_loc_tex = start_loc_refine;
vec3 small_step = step * 0.1;
for (int i=0; i<10; i++) {
float val = $get_data(loc).r;
if ( val > maxval) {
maxval = val;
max_loc_tex = start_loc_refine + (small_step * i);
}
loc += small_step;
}
frag_depth_point = max_loc_tex * u_shape;
gl_FragColor = applyColormap(maxval);
} else {
discard;
}
""",
)
_ATTENUATED_MIP_SNIPPETS = dict(
before_loop="""
float maxval = u_mip_cutoff; // The maximum encountered value
float sumval = 0.0; // The sum of the encountered values
float scale = 0.0; // The cumulative attenuation
int maxi = -1; // Where the maximum value was encountered
vec3 max_loc_tex = vec3(0.0); // Location where the maximum value was encountered
""",
in_loop="""
// Scale and clamp accumulation in `sumval` by contrast limits so that:
// * attenuation value does not depend on data values
// * negative values do not amplify instead of attenuate
sumval = sumval + u_relative_step_size * clamp((val - clim.x) / (clim.y - clim.x), 0.0, 1.0);
scale = exp(-u_attenuation * (sumval - 1));
if( maxval > scale * clim.y ) {
// stop if no chance of finding a higher maxval
iter = nsteps;
} else if( val * scale > maxval ) {
maxval = val * scale;
maxi = iter;
max_loc_tex = loc;
}
""",
after_loop="""
if ( maxi > -1 ) {
frag_depth_point = max_loc_tex * u_shape;
gl_FragColor = applyColormap(maxval);
}
else {
discard;
}
""",
)
_MINIP_SNIPPETS = dict(
before_loop="""
float minval = u_minip_cutoff; // The minimum encountered value
int mini = -1; // Where the minimum value was encountered
""",
in_loop="""
if ( val < minval ) {
minval = val;
mini = iter;
if ( minval <= clim.x ) {
// stop if no chance of finding a lower minval
iter = nsteps;
}
}
""",
after_loop="""
// Refine search for min value, but only if anything was found
if ( mini > -1 ) {
// Calculate starting location of ray for sampling
vec3 start_loc_refine = start_loc + step * (float(mini) - 0.5);
loc = start_loc_refine;
// Variables to keep track of current value and where max was encountered
vec3 min_loc_tex = start_loc_refine;
vec3 small_step = step * 0.1;
for (int i=0; i<10; i++) {
float val = $get_data(loc).r;
if ( val < minval) {
minval = val;
min_loc_tex = start_loc_refine + (small_step * i);
}
loc += small_step;
}
frag_depth_point = min_loc_tex * u_shape;
gl_FragColor = applyColormap(minval);
} else {
discard;
}
""",
)
_TRANSLUCENT_SNIPPETS = dict(
before_loop="""
vec4 integrated_color = vec4(0., 0., 0., 0.);
""",
in_loop="""
color = applyColormap(val);
float a1 = integrated_color.a;
float a2 = color.a * (1 - a1);
float alpha = max(a1 + a2, 0.001);
// Doesn't work.. GLSL optimizer bug?
//integrated_color = (integrated_color * a1 / alpha) +
// (color * a2 / alpha);
// This should be identical but does work correctly:
integrated_color *= a1 / alpha;
integrated_color += color * a2 / alpha;
integrated_color.a = alpha;
if( alpha > 0.99 ){
// stop integrating if the fragment becomes opaque
iter = nsteps;
}
""",
after_loop="""
gl_FragColor = integrated_color;
""",
)
_ADDITIVE_SNIPPETS = dict(
before_loop="""
vec4 integrated_color = vec4(0., 0., 0., 0.);
""",
in_loop="""
color = applyColormap(val);
integrated_color = 1.0 - (1.0 - integrated_color) * (1.0 - color);
""",
after_loop="""
gl_FragColor = integrated_color;
""",
)
_ISO_SNIPPETS = dict(
before_loop="""
vec4 color3 = vec4(0.0); // final color
vec3 dstep = 1.5 / u_shape; // step to sample derivative
gl_FragColor = vec4(0.0);
bool discard_fragment = true;
""",
in_loop="""
if (val > u_threshold-0.2) {
// Take the last interval in smaller steps
vec3 iloc = loc - step;
for (int i=0; i<10; i++) {
color = $get_data(iloc);
if (color.r > u_threshold) {
color = calculateColor(color, iloc, dstep);
gl_FragColor = applyColormap(color.r);
// set the variables for the depth buffer
frag_depth_point = iloc * u_shape;
discard_fragment = false;
iter = nsteps;
break;
}
iloc += step * 0.1;
}
}
""",
after_loop="""
if (discard_fragment)
discard;
""",
)
_AVG_SNIPPETS = dict(
before_loop="""
float n = 0; // Counter for encountered values
float meanval = 0.0; // The mean of encountered values
float prev_mean = 0.0; // Variable to store the previous incremental mean
""",
in_loop="""
// Incremental mean value used for numerical stability
n += 1; // Increment the counter
prev_mean = meanval; // Update the mean for previous iteration
meanval = prev_mean + (val - prev_mean) / n; // Calculate the mean
""",
after_loop="""
// Apply colormap on mean value
gl_FragColor = applyColormap(meanval);
""",
)
_INTERPOLATION_TEMPLATE = """
#include "misc/spatial-filters.frag"
vec4 texture_lookup_filtered(vec3 texcoord) {
// no need to discard out of bounds, already checked during raycasting
return %s($texture, $shape, texcoord);
}"""
_TEXTURE_LOOKUP = """
vec4 texture_lookup(vec3 texcoord) {
// no need to discard out of bounds, already checked during raycasting
return texture3D($texture, texcoord);
}"""
class VolumeVisual(Visual):
"""Displays a 3D Volume
Parameters
----------
vol : ndarray
The volume to display. Must be ndim==3. Array is assumed to be stored
as ``(z, y, x)``.
clim : str | tuple
Limits to use for the colormap. I.e. the values that map to black and white
in a gray colormap. Can be 'auto' to auto-set bounds to
the min and max of the data. If not given or None, 'auto' is used.
method : {'mip', 'attenuated_mip', 'minip', 'translucent', 'additive',
'iso', 'average'}
The render method to use. See corresponding docs for details.
Default 'mip'.
threshold : float
The threshold to use for the isosurface render method. By default
the mean of the given volume is used.
attenuation: float
The attenuation rate to apply for the attenuated mip render method.
Default: 1.0.
relative_step_size : float
The relative step size to step through the volume. Default 0.8.
Increase to e.g. 1.5 to increase performance, at the cost of
quality.
cmap : str
Colormap to use.
gamma : float
Gamma to use during colormap lookup. Final color will be cmap(val**gamma).
by default: 1.
interpolation : str
Selects method of texture interpolation. Makes use of the two hardware
interpolation methods and the available interpolation methods defined
in vispy/gloo/glsl/misc/spatial_filters.frag
* 'nearest': Default, uses 'nearest' with Texture interpolation.
* 'linear': uses 'linear' with Texture interpolation.
* 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'cubic',
'catrom', 'mitchell', 'spline16', 'spline36', 'gaussian',
'bessel', 'sinc', 'lanczos', 'blackman'
texture_format : numpy.dtype | str | None
How to store data on the GPU. OpenGL allows for many different storage
formats and schemes for the low-level texture data stored in the GPU.
Most common is unsigned integers or floating point numbers.
Unsigned integers are the most widely supported while other formats
may not be supported on older versions of OpenGL or with older GPUs.
Default value is ``None`` which means data will be scaled on the
CPU and the result stored in the GPU as an unsigned integer. If a
numpy dtype object, an internal texture format will be chosen to
support that dtype and data will *not* be scaled on the CPU. Not all
dtypes are supported. If a string, then
it must be one of the OpenGL internalformat strings described in the
table on this page: https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glTexImage2D.xhtml
The name should have `GL_` removed and be lowercase (ex.
`GL_R32F` becomes ``'r32f'``). Lastly, this can also be the string
``'auto'`` which will use the data type of the provided volume data
to determine the internalformat of the texture.
When this is specified (not ``None``) data is scaled on the
GPU which allows for faster color limit changes. Additionally, when
32-bit float data is provided it won't be copied before being
transferred to the GPU. Note this visual is limited to "luminance"
formatted data (single band). This is equivalent to `GL_RED` format
in OpenGL 4.0.
raycasting_mode : {'volume', 'plane'}
Whether to cast a ray through the whole volume or perpendicular to a
plane through the volume defined.
plane_position : ArrayLike
A (3,) array containing a position on a plane of interest in the volume.
The position is defined in data coordinates. Only relevant in
raycasting_mode = 'plane'.
plane_normal : ArrayLike
A (3,) array containing a vector normal to the plane of interest in the
volume. The normal vector is defined in data coordinates. Only relevant
in raycasting_mode = 'plane'.
plane_thickness : float
A value defining the total length of the ray perpendicular to the
plane interrogated during rendering. Defined in data coordinates.
Only relevant in raycasting_mode = 'plane'.
.. versionchanged: 0.7
Deprecate 'emulate_texture' keyword argument.
"""
_rendering_methods = {
'mip': _MIP_SNIPPETS,
'minip': _MINIP_SNIPPETS,
'attenuated_mip': _ATTENUATED_MIP_SNIPPETS,
'iso': _ISO_SNIPPETS,
'translucent': _TRANSLUCENT_SNIPPETS,
'additive': _ADDITIVE_SNIPPETS,
'average': _AVG_SNIPPETS
}
_raycasting_modes = {
'volume': _RAYCASTING_SETUP_VOLUME,
'plane': _RAYCASTING_SETUP_PLANE
}
_shaders = {
'vertex': _VERTEX_SHADER,
'fragment': _FRAGMENT_SHADER,
}
_func_templates = {
'texture_lookup_interpolated': _INTERPOLATION_TEMPLATE,
'texture_lookup': _TEXTURE_LOOKUP,
}
def __init__(self, vol, clim="auto", method='mip', threshold=None,
attenuation=1.0, relative_step_size=0.8, cmap='grays',
gamma=1.0, interpolation='linear', texture_format=None,
raycasting_mode='volume', plane_position=None,
plane_normal=None, plane_thickness=1.0, clipping_planes=None,
clipping_planes_coord_system='scene', mip_cutoff=None,
minip_cutoff=None):
tr = ['visual', 'scene', 'document', 'canvas', 'framebuffer', 'render']
if clipping_planes_coord_system not in tr:
raise ValueError(f'Invalid coordinate system {clipping_planes_coord_system}. Must be one of {tr}.')
self._clipping_planes_coord_system = clipping_planes_coord_system
self._clip_transform = None
# Storage of information of volume
self._vol_shape = ()
self._gamma = gamma
self._raycasting_mode = raycasting_mode
self._need_vertex_update = True
# Set the colormap
self._cmap = get_colormap(cmap)
self._is_zyx = True
# Create gloo objects
self._vertices = VertexBuffer()
kernel, interpolation_methods = load_spatial_filters()
self._kerneltex = Texture2D(kernel, interpolation='nearest')
interpolation_methods, interpolation_fun = self._init_interpolation(
interpolation_methods)
self._interpolation_methods = interpolation_methods
self._interpolation_fun = interpolation_fun
self._interpolation = interpolation
if self._interpolation not in self._interpolation_methods:
raise ValueError("interpolation must be one of %s" %
', '.join(self._interpolation_methods))
self._data_lookup_fn = None
self._need_interpolation_update = True
self._texture = self._create_texture(texture_format, vol)
# used to store current data for later CPU-side scaling if
# texture_format is None
self._last_data = None
# Create program
Visual.__init__(self, vcode=self._shaders['vertex'], fcode=self._shaders['fragment'])
self.shared_program['u_volumetex'] = self._texture
self.shared_program['a_position'] = self._vertices
self.shared_program['gamma'] = self._gamma
self._draw_mode = 'triangle_strip'
self._index_buffer = IndexBuffer()
# Only show back faces of cuboid. This is required because if we are
# inside the volume, then the front faces are outside of the clipping
# box and will not be drawn.
self.set_gl_state('translucent', cull_face=False)
# Apply clim and set data at the same time
self.set_data(vol, clim or "auto")
# Set params
self.raycasting_mode = raycasting_mode
self.mip_cutoff = mip_cutoff
self.minip_cutoff = minip_cutoff
self.method = method
self.relative_step_size = relative_step_size
self.threshold = threshold if threshold is not None else vol.mean()
self.attenuation = attenuation
# Set plane params
if plane_position is None:
self.plane_position = [x / 2 for x in vol.shape]
else:
self.plane_position = plane_position
if plane_normal is None:
self.plane_normal = [1, 0, 0]
else:
self.plane_normal = plane_normal
self.plane_thickness = plane_thickness
self.clipping_planes = clipping_planes
self.freeze()
def _init_interpolation(self, interpolation_methods):
# create interpolation shader functions for available
# interpolations
fun = [Function(self._func_templates['texture_lookup_interpolated'] % (n + '3D'))
for n in interpolation_methods]
interpolation_methods = [n.lower() for n in interpolation_methods]
interpolation_fun = dict(zip(interpolation_methods, fun))
interpolation_methods = tuple(sorted(interpolation_methods))
# overwrite "nearest" and "linear" spatial-filters
# with "hardware" interpolation _data_lookup_fn
hardware_lookup = Function(self._func_templates['texture_lookup'])
interpolation_fun['nearest'] = hardware_lookup
interpolation_fun['linear'] = hardware_lookup
# alias bicubic to cubic (but deprecate)
interpolation_methods = interpolation_methods + ('bicubic',)
return interpolation_methods, interpolation_fun
def _create_texture(self, texture_format, data):
if texture_format is not None:
tex_cls = GPUScaledTextured3D
else:
tex_cls = CPUScaledTexture3D
if self._interpolation == 'linear':
texture_interpolation = 'linear'
else:
texture_interpolation = 'nearest'
# clamp_to_edge means any texture coordinates outside of 0-1 should be
# clamped to 0 and 1.
# NOTE: This doesn't actually set the data in the texture. Only
# creates a placeholder texture that will be resized later on.
return tex_cls(data, interpolation=texture_interpolation,
internalformat=texture_format,
format='luminance',
wrapping='clamp_to_edge')
def set_data(self, vol, clim=None, copy=True):
"""Set the volume data.
Parameters
----------
vol : ndarray
The 3D volume.
clim : tuple
Colormap limits to use (min, max). None will use the min and max
values. Defaults to ``None``.
copy : bool
Whether to copy the input volume prior to applying clim
normalization on the CPU. Has no effect if visual was created
with 'texture_format' not equal to None as data is not modified
on the CPU and data must already be copied to the GPU.
Data must be 32-bit floating point data to completely avoid any
data copying when scaling on the CPU. Defaults to ``True`` for
CPU scaled data. It is forced to ``False`` for GPU scaled data.
"""
# Check volume
if not isinstance(vol, np.ndarray):
raise ValueError('Volume visual needs a numpy array.')
if not ((vol.ndim == 3) or (vol.ndim == 4 and vol.shape[-1] > 1)):
raise ValueError('Volume visual needs a 3D array.')
if isinstance(self._texture, GPUScaledTextured3D):
copy = False
if clim is not None and clim != self._texture.clim:
self._texture.set_clim(clim)
# Apply to texture
self._texture.check_data_format(vol)
self._last_data = vol
self._texture.scale_and_set_data(vol, copy=copy)
self.shared_program['clim'] = self._texture.clim_normalized
self.shared_program['u_shape'] = (vol.shape[2], vol.shape[1],
vol.shape[0])
shape = vol.shape[:3]
if self._vol_shape != shape:
self._vol_shape = shape
self._need_vertex_update = True
self._vol_shape = shape
@property
def rendering_methods(self):
return list(self._rendering_methods)
@property
def raycasting_modes(self):
return list(self._raycasting_modes)
@property
def clim(self):
"""The contrast limits that were applied to the volume data.
Volume display is mapped from black to white with these values.
Settable via set_data() as well as @clim.setter.
"""
return self._texture.clim
@clim.setter
def clim(self, value):
"""Set contrast limits used when rendering the image.
``value`` should be a 2-tuple of floats (min_clim, max_clim), where each value is
within the range set by self.clim. If the new value is outside of the (min, max)
range of the clims previously used to normalize the texture data, then data will
be renormalized using set_data.
"""
if self._texture.set_clim(value):
self.set_data(self._last_data, clim=value)
self.shared_program['clim'] = self._texture.clim_normalized
self.update()
@property
def gamma(self):
"""The gamma used when rendering the image."""
return self._gamma
@gamma.setter
def gamma(self, value):
"""Set gamma used when rendering the image."""
if value <= 0:
raise ValueError("gamma must be > 0")
self._gamma = float(value)
self.shared_program['gamma'] = self._gamma
self.update()
@property
def cmap(self):
return self._cmap
@cmap.setter
def cmap(self, cmap):
self._cmap = get_colormap(cmap)
self.shared_program.frag['cmap'] = Function(self._cmap.glsl_map)
self.shared_program['texture2D_LUT'] = self.cmap.texture_lut()
self.update()
@property
def interpolation_methods(self):
return self._interpolation_methods
@property
def interpolation(self):
"""Get interpolation algorithm name."""
return self._interpolation
@interpolation.setter
def interpolation(self, i):
if i not in self._interpolation_methods:
raise ValueError("interpolation must be one of %s" %
', '.join(self._interpolation_methods))
if self._interpolation != i:
self._interpolation = i
self._need_interpolation_update = True
self.update()
# The interpolation code could be transferred to a dedicated filter
# function in visuals/filters as discussed in #1051
def _build_interpolation(self):
"""Rebuild the _data_lookup_fn for different interpolations."""
interpolation = self._interpolation
# alias bicubic to cubic
if interpolation == 'bicubic':
warnings.warn(
"'bicubic' interpolation is Deprecated. Use 'cubic' instead.",
DeprecationWarning,
stacklevel=2,
)
interpolation = 'cubic'
self._data_lookup_fn = self._interpolation_fun[interpolation]
try:
self.shared_program.frag['get_data'] = self._data_lookup_fn
except Exception as e:
print(e)
# only 'linear' uses 'linear' texture interpolation
if interpolation == 'linear':
texture_interpolation = 'linear'
else:
# 'nearest' (and also 'linear') doesn't use spatial_filters.frag
# so u_kernel and shape setting is skipped
texture_interpolation = 'nearest'
if interpolation != 'nearest':
self.shared_program['u_kernel'] = self._kerneltex
self._data_lookup_fn['shape'] = self._last_data.shape[:3][::-1]
if self._texture.interpolation != texture_interpolation:
self._texture.interpolation = texture_interpolation
self._data_lookup_fn['texture'] = self._texture
self._need_interpolation_update = False
@staticmethod
@lru_cache(maxsize=10)
def _build_clipping_planes_glsl(n_planes: int) -> str:
"""Build the code snippet used to clip the volume based on self.clipping_planes."""
func_template = '''
float clip_planes(vec3 loc, vec3 vol_shape) {{
vec3 loc_transf = $clip_transform(vec4(loc * vol_shape, 1)).xyz;
float distance_from_clip = 3.4e38; // max float
{clips};
return distance_from_clip;
}}
'''
# the vertex is considered clipped if on the "negative" side of the plane
clip_template = '''
vec3 relative_vec{idx} = loc_transf - $clipping_plane_pos{idx};
float distance_from_clip{idx} = dot(relative_vec{idx}, $clipping_plane_norm{idx});
distance_from_clip = min(distance_from_clip{idx}, distance_from_clip);
'''
all_clips = []
for idx in range(n_planes):
all_clips.append(clip_template.format(idx=idx))
formatted_code = func_template.format(clips=''.join(all_clips))
return formatted_code
@property
def clipping_planes(self) -> np.ndarray:
"""The set of planes used to clip the volume. Values on the negative side of the normal are discarded.
Each plane is defined by a position and a normal vector (magnitude is irrelevant). Shape: (n_planes, 2, 3).
The order is xyz, as opposed to data's zyx (for consistency with the rest of vispy)
Example: one plane in position (0, 0, 0) and with normal (0, 0, 1),
and a plane in position (1, 1, 1) with normal (0, 1, 0):
>>> volume.clipping_planes = np.array([
>>> [[0, 0, 0], [0, 0, 1]],
>>> [[1, 1, 1], [0, 1, 0]],
>>> ])
"""
return self._clipping_planes
@clipping_planes.setter
def clipping_planes(self, value: Optional[np.ndarray]):
if value is None:
value = np.empty([0, 2, 3])
self._clipping_planes = value
self._clip_func = Function(self._build_clipping_planes_glsl(len(value)))
self.shared_program.frag['clip_with_planes'] = self._clip_func
self._clip_func['clip_transform'] = self._clip_transform
for idx, plane in enumerate(value):
self._clip_func[f'clipping_plane_pos{idx}'] = tuple(plane[0])
self._clip_func[f'clipping_plane_norm{idx}'] = tuple(plane[1])
self.update()
@property
def clipping_planes_coord_system(self) -> str:
"""
Coordinate system used by the clipping planes (see visuals.transforms.transform_system.py)
"""
return self._clipping_planes_coord_system
@property
def _before_loop_snippet(self):
return self._rendering_methods[self.method]['before_loop']
@property
def _in_loop_snippet(self):
return self._rendering_methods[self.method]['in_loop']
@property
def _after_loop_snippet(self):
return self._rendering_methods[self.method]['after_loop']
@property
def method(self):
"""The render method to use
Current options are:
* translucent: voxel colors are blended along the view ray until
the result is opaque.
* mip: maxiumum intensity projection. Cast a ray and display the
maximum value that was encountered.
* minip: minimum intensity projection. Cast a ray and display the
minimum value that was encountered.
* attenuated_mip: attenuated maximum intensity projection. Cast a
ray and display the maximum value encountered. Values are
attenuated as the ray moves deeper into the volume.
* additive: voxel colors are added along the view ray until
the result is saturated.
* iso: isosurface. Cast a ray until a certain threshold is
encountered. At that location, lighning calculations are
performed to give the visual appearance of a surface.
* average: average intensity projection. Cast a ray and display the
average of values that were encountered.
"""
return self._method
@method.setter
def method(self, method):
# Check and save
known_methods = list(self._rendering_methods.keys())
if method not in known_methods:
raise ValueError('Volume render method should be in %r, not %r' %
(known_methods, method))
self._method = method
# $get_data needs to be unset and re-set, since it's present inside the snippets.
# Program should probably be able to do this automatically
self.shared_program.frag['get_data'] = None
self.shared_program.frag['raycasting_setup'] = self._raycasting_setup_snippet
self.shared_program.frag['before_loop'] = self._before_loop_snippet
self.shared_program.frag['in_loop'] = self._in_loop_snippet
self.shared_program.frag['after_loop'] = self._after_loop_snippet
self.shared_program.frag['sampler_type'] = self._texture.glsl_sampler_type
self.shared_program.frag['cmap'] = Function(self._cmap.glsl_map)
self.shared_program['texture2D_LUT'] = self.cmap.texture_lut()
self.shared_program['u_mip_cutoff'] = self._mip_cutoff
self.shared_program['u_minip_cutoff'] = self._minip_cutoff
self._need_interpolation_update = True
self.update()
@property
def _raycasting_setup_snippet(self):
return self._raycasting_modes[self.raycasting_mode]
@property
def raycasting_mode(self):
"""The raycasting mode to use.
This defines whether to cast a ray through the whole volume or
perpendicular to a plane through the volume.
must be in {'volume', 'plane'}
"""
return self._raycasting_mode
@raycasting_mode.setter
def raycasting_mode(self, value: str):
valid_raycasting_modes = self._raycasting_modes.keys()
if value not in valid_raycasting_modes:
raise ValueError(f"Raycasting mode should be in {valid_raycasting_modes}, not {value}")
self._raycasting_mode = value
self.shared_program.frag['raycasting_setup'] = self._raycasting_setup_snippet
self.update()
@property
def threshold(self):
"""The threshold value to apply for the isosurface render method."""
return self._threshold
@threshold.setter
def threshold(self, value):
self._threshold = float(value)
self.shared_program['u_threshold'] = self._threshold
self.update()
@property
def attenuation(self):
"""The attenuation rate to apply for the attenuated mip render method."""
return self._attenuation
@attenuation.setter
def attenuation(self, value):
self._attenuation = float(value)
self.shared_program['u_attenuation'] = self._attenuation
self.update()
@property
def relative_step_size(self):
"""The relative step size used during raycasting.
Larger values yield higher performance at reduced quality. If
set > 2.0 the ray skips entire voxels. Recommended values are
between 0.5 and 1.5. The amount of quality degredation depends
on the render method.
"""
return self._relative_step_size
@relative_step_size.setter
def relative_step_size(self, value):
"""Set the relative step size used during raycasting.
Very small values give increased detail when rendering volumes with
few voxels, but values that are too small give worse performance
(framerate), in extreme cases causing a GPU hang and for the process
to be killed by the OS. See discussion at:
https://github.com/vispy/vispy/pull/2587
For this reason, this setter issues a warning when the value is
smaller than ``side_len / (2 * MAX_CANVAS_SIZE)``, where ``side_len``
is the smallest side of the volume and ``MAX_CANVAS_SIZE`` is what
we consider to be the largest likely monitor resolution along its
longest side: 7680 pixels, equivalent to an 8K monitor.
This setter also raises a ValueError when the value is 0 or negative.
"""
value = float(value)
side_len = np.min(self._vol_shape)
MAX_CANVAS_SIZE = 7680
minimum_val = side_len / (2 * MAX_CANVAS_SIZE)
if value <= 0:
raise ValueError('relative_step_size cannot be 0 or negative.')
elif value < minimum_val:
warnings.warn(
f'To display a volume of shape {self._vol_shape} without '
f'artifacts, you need a step size no smaller than {side_len} /'
f'(2 * {MAX_CANVAS_SIZE}) = {minimum_val:,.3g}. To prevent '
'extreme degradation in rendering performance, the provided '
f'value of {value} is being clipped to {minimum_val:,.3g}. If '
'you believe you need a smaller step size, please raise an '
'issue at https://github.com/vispy/vispy/issues.'
)
value = minimum_val
self._relative_step_size = value
self.shared_program['u_relative_step_size'] = value
@property
def plane_position(self):
"""Position on a plane through the volume.
A (3,) array containing a position on a plane of interest in the volume.
The position is defined in data coordinates. Only relevant in
raycasting_mode = 'plane'.
"""
return self._plane_position
@plane_position.setter
def plane_position(self, value):
value = np.array(value, dtype=np.float32).ravel()
if value.shape != (3, ):
raise ValueError('plane_position must be a 3 element array-like object')
self._plane_position = value
self.shared_program['u_plane_position'] = value[::-1]
self.update()
@property
def plane_normal(self):
"""Direction normal to a plane through the volume.
A (3,) array containing a vector normal to the plane of interest in the
volume. The normal vector is defined in data coordinates. Only relevant
in raycasting_mode = 'plane'.
"""
return self._plane_normal
@plane_normal.setter
def plane_normal(self, value):
value = np.array(value, dtype=np.float32).ravel()
if value.shape != (3, ):
raise ValueError('plane_normal must be a 3 element array-like object')
self._plane_normal = value
self.shared_program['u_plane_normal'] = value[::-1]
self.update()
@property
def plane_thickness(self):
"""Thickness of a plane through the volume.
A value defining the total length of the ray perpendicular to the
plane interrogated during rendering. Defined in data coordinates.
Only relevant in raycasting_mode = 'plane'.
"""
return self._plane_thickness
@plane_thickness.setter
def plane_thickness(self, value: float):
value = float(value)
if value < 1:
raise ValueError('plane_thickness should be at least 1.0')
self._plane_thickness = value
self.shared_program['u_plane_thickness'] = value
self.update()
@property
def mip_cutoff(self):
"""The lower cutoff value for `mip` and `attenuated_mip`.
When using the `mip` or `attenuated_mip` rendering methods, fragments
with values below the cutoff will be discarded.
"""
return self._mip_cutoff
@mip_cutoff.setter
def mip_cutoff(self, value):
if value is None:
value = np.finfo('float32').min
self._mip_cutoff = float(value)
self.shared_program['u_mip_cutoff'] = self._mip_cutoff
self.update()
@property
def minip_cutoff(self):
"""The upper cutoff value for `minip`.
When using the `minip` rendering method, fragments
with values above the cutoff will be discarded.
"""
return self._minip_cutoff
@minip_cutoff.setter
def minip_cutoff(self, value):
if value is None:
value = np.finfo('float32').max
self._minip_cutoff = float(value)
self.shared_program['u_minip_cutoff'] = self._minip_cutoff
self.update()
def _create_vertex_data(self):
"""Create and set positions and texture coords from the given shape
We have six faces with 1 quad (2 triangles) each, resulting in
6*2*3 = 36 vertices in total.
"""
shape = self._vol_shape
# Get corner coordinates. The -0.5 offset is to center
# pixels/voxels. This works correctly for anisotropic data.
x0, x1 = -0.5, shape[2] - 0.5
y0, y1 = -0.5, shape[1] - 0.5
z0, z1 = -0.5, shape[0] - 0.5
pos = np.array([
[x0, y0, z0],
[x1, y0, z0],
[x0, y1, z0],
[x1, y1, z0],
[x0, y0, z1],
[x1, y0, z1],
[x0, y1, z1],
[x1, y1, z1],
], dtype=np.float32)
"""
6-------7
/| /|
4-------5 |
| | | |
| 2-----|-3
|/ |/
0-------1
"""
# Order is chosen such that normals face outward; front faces will be
# culled.
indices = np.array([2, 6, 0, 4, 5, 6, 7, 2, 3, 0, 1, 5, 3, 7],
dtype=np.uint32)
# Apply
self._vertices.set_data(pos)
self._index_buffer.set_data(indices)
def _compute_bounds(self, axis, view):
if self._is_zyx:
# axis=(x, y, z) -> shape(..., z, y, x)
ndim = len(self._vol_shape)
return 0, self._vol_shape[ndim - 1 - axis]
else:
# axis=(x, y, z) -> shape(x, y, z)
return 0, self._vol_shape[axis]
def _prepare_transforms(self, view):
trs = view.transforms
view.view_program.vert['transform'] = trs.get_transform()
view_tr_f = trs.get_transform('visual', 'document')
view_tr_i = view_tr_f.inverse
view.view_program.vert['viewtransformf'] = view_tr_f
view.view_program.vert['viewtransformi'] = view_tr_i
view.view_program.frag['viewtransformf'] = view_tr_f
self._clip_transform = trs.get_transform('visual', self._clipping_planes_coord_system)
def _prepare_draw(self, view):
if self._need_vertex_update:
self._create_vertex_data()
if self._need_interpolation_update:
self._build_interpolation()
|