File: windbarb.py

package info (click to toggle)
python-vispy 0.15.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 8,868 kB
  • sloc: python: 59,799; javascript: 6,800; makefile: 69; sh: 6
file content (291 lines) | stat: -rw-r--r-- 9,306 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
"""Windbarb Visual and shader definitions."""

import numpy as np

from vispy.color import ColorArray
from vispy.gloo import VertexBuffer
from vispy.visuals.shaders import Variable
from vispy.visuals.visual import Visual

_VERTEX_SHADER = """
uniform float u_antialias;
uniform float u_px_scale;
uniform float u_scale;

attribute vec3  a_position;
attribute vec2  a_wind;
attribute vec4  a_fg_color;
attribute vec4  a_bg_color;
attribute float a_edgewidth;
attribute float a_size;
attribute float a_trig;

varying vec4 v_fg_color;
varying vec4 v_bg_color;
varying vec2 v_wind;
varying float v_trig;
varying float v_edgewidth;
varying float v_antialias;

void main (void) {
    $v_size = a_size * u_px_scale * u_scale;
    v_edgewidth = a_edgewidth * float(u_px_scale);
    v_wind = a_wind.xy;
    v_trig = a_trig;
    v_antialias = u_antialias;
    v_fg_color  = a_fg_color;
    v_bg_color  = a_bg_color;
    gl_Position = $transform(vec4(a_position,1.0));
    float edgewidth = max(v_edgewidth, 1.0);
    gl_PointSize = ($v_size) + 4.*(edgewidth + 1.5*v_antialias);
}
"""

_FRAGMENT_SHADER = """
#include "math/constants.glsl"
#include "math/signed-segment-distance.glsl"
#include "antialias/antialias.glsl"
varying vec4 v_fg_color;
varying vec4 v_bg_color;
varying vec2 v_wind;
varying float v_trig;
varying float v_edgewidth;
varying float v_antialias;

// SDF-Triangle by @rougier
// https://github.com/rougier/python-opengl/blob/master/code/chapter-06/SDF-triangle.py
float sdf_triangle(vec2 p, vec2 p0, vec2 p1, vec2 p2)
{
    vec2 e0 = p1 - p0;
    vec2 e1 = p2 - p1;
    vec2 e2 = p0 - p2;
    vec2 v0 = p - p0;
    vec2 v1 = p - p1;
    vec2 v2 = p - p2;
    vec2 pq0 = v0 - e0*clamp( dot(v0,e0)/dot(e0,e0), 0.0, 1.0 );
    vec2 pq1 = v1 - e1*clamp( dot(v1,e1)/dot(e1,e1), 0.0, 1.0 );
    vec2 pq2 = v2 - e2*clamp( dot(v2,e2)/dot(e2,e2), 0.0, 1.0 );
    float s = sign( e0.x*e2.y - e0.y*e2.x );
    vec2 d = min( min( vec2( dot( pq0, pq0 ), s*(v0.x*e0.y-v0.y*e0.x) ),
                     vec2( dot( pq1, pq1 ), s*(v1.x*e1.y-v1.y*e1.x) )),
                     vec2( dot( pq2, pq2 ), s*(v2.x*e2.y-v2.y*e2.x) ));
    return -sqrt(d.x)*sign(d.y);
}

void main()
{
    // Discard plotting marker body and edge if zero-size
    if ($v_size <= 0.)
        discard;

    float edgewidth = max(v_edgewidth, 1.0);
    float linewidth = max(v_edgewidth, 1.0);
    float edgealphafactor = min(v_edgewidth, 1.0);

    float size = $v_size + 4.*(edgewidth + 1.5*v_antialias);
    // factor 6 for acute edge angles that need room as for star marker
    
    vec2 wind = v_wind;
    
    if (v_trig > 0.)
    {
        float u = wind.x * cos(radians(wind.y));
        float v = wind.x * sin(radians(wind.y));
        wind = vec2(u, v);
    }
    
    // knots to m/s
    wind *= 2.;
    
    // normalized distance
    float dx = 0.5;
    // normalized center point
    vec2 O = vec2(dx);
    // normalized x-component
    vec2 X = normalize(wind) * dx / M_SQRT2 / 1.1 * vec2(1, -1);
    // normalized y-component
    // here the barb can be mirrored for southern earth * (vec2(1., -1.)
    //vec2 Y = X.yx * vec2(1., -1.); // southern hemisphere
    vec2 Y = X.yx * vec2(-1., 1.); // northern hemisphere
    // PointCoordinate
    vec2 P = gl_PointCoord;

    // calculate barb items
    float speed = length(wind);
    int flag = int(floor(speed / 50.));
    speed -= float (50 * flag);
    int longbarb = int(floor(speed / 10.));
    speed -= float (longbarb * 10);
    int shortbarb = int(floor(speed / 5.));
    int calm = shortbarb + longbarb + flag;

    // starting distance
    float r;
    // calm, plot circles
    if (calm == 0)
    {
        r = abs(length(O-P)- dx * 0.2);
        r = min(r, abs(length(O-P)- dx * 0.1));
    }
    else
    {
        // plot shaft
        r = segment_distance(P, O, O-X);
        float pos = 1.;

        // plot flag(s)
        while(flag >= 1)
        {
            r = min(r, sdf_triangle(P, O-X*pos, O-X*pos-X*.4-Y*.4, O-X*pos-X*.4));
            flag -= 1;
            pos -= 0.15;
        }
        // plot longbarb(s)
        while(longbarb >= 1)
        {
            r = min(r, segment_distance(P, O-X*pos, O-X*pos-X*.4-Y*.4));
            longbarb -= 1;
            pos -= 0.15;
        }
        // plot shortbarb
        while(shortbarb >= 1)
        {
            if (pos == 1.0)
                pos -= 0.15;
            r = min(r, segment_distance(P, O-X*pos, O-X*pos-X*.2-Y*.2));
            shortbarb -= 1;
            pos -= 0.15;
        }
    }

    // apply correction for size
    r *= size;

    vec4 edgecolor = vec4(v_fg_color.rgb, edgealphafactor*v_fg_color.a);

    if (r > 0.5 * v_edgewidth + v_antialias)
    {
        // out of the marker (beyond the outer edge of the edge
        // including transition zone due to antialiasing)
        discard;
    }

    gl_FragColor = filled(r, edgewidth, v_antialias, edgecolor);
}
"""


class WindbarbVisual(Visual):
    """Visual displaying windbarbs."""

    _shaders = {
        'vertex': _VERTEX_SHADER,
        'fragment': _FRAGMENT_SHADER,
    }

    def __init__(self, **kwargs):
        self._vbo = VertexBuffer()
        self._v_size_var = Variable('varying float v_size')
        self._marker_fun = None
        self._data = None
        Visual.__init__(self, vcode=self._shaders['vertex'], fcode=self._shaders['fragment'])
        self.shared_program.vert['v_size'] = self._v_size_var
        self.shared_program.frag['v_size'] = self._v_size_var
        self.set_gl_state(depth_test=True, blend=True,
                          blend_func=('src_alpha', 'one_minus_src_alpha'))
        self._draw_mode = 'points'
        if len(kwargs) > 0:
            self.set_data(**kwargs)
        self.freeze()

    def set_data(self, pos=None, wind=None, trig=True, size=50.,
                 antialias=1., edge_width=1., edge_color='black',
                 face_color='white'):
        """Set the data used to display this visual.

        Parameters
        ----------
        pos : array
            The array of locations to display each windbarb.
        wind : array
            The array of wind vector components to display each windbarb.
            in m/s. For knots divide by two.
        trig : bool
            True - wind contains (mag, ang)
            False - wind contains (u, v)
            defaults to True
        size : float or array
            The windbarb size in px.
        antialias : float
            The antialiased area (in pixels).
        edge_width : float | None
            The width of the windbarb outline in pixels.
        edge_color : Color | ColorArray
            The color used to draw each symbol outline.
        face_color : Color | ColorArray
            The color used to draw each symbol interior.
        """
        assert (isinstance(pos, np.ndarray) and
                pos.ndim == 2 and pos.shape[1] in (2, 3))
        assert (isinstance(wind, np.ndarray) and
                pos.ndim == 2 and pos.shape[1] == 2)
        if edge_width < 0:
            raise ValueError('edge_width cannot be negative')

        # since the windbarb starts in the fragment center,
        # we need to multiply by 2 for correct length
        size *= 2

        edge_color = ColorArray(edge_color).rgba
        if len(edge_color) == 1:
            edge_color = edge_color[0]

        face_color = ColorArray(face_color).rgba
        if len(face_color) == 1:
            face_color = face_color[0]

        n = len(pos)
        data = np.zeros(n, dtype=[('a_position', np.float32, 3),
                                  ('a_wind', np.float32, 2),
                                  ('a_trig', np.float32, 0),
                                  ('a_fg_color', np.float32, 4),
                                  ('a_bg_color', np.float32, 4),
                                  ('a_size', np.float32),
                                  ('a_edgewidth', np.float32)])
        data['a_fg_color'] = edge_color
        data['a_bg_color'] = face_color
        data['a_edgewidth'] = edge_width
        data['a_position'][:, :pos.shape[1]] = pos
        data['a_wind'][:, :wind.shape[1]] = wind
        if trig:
            data['a_trig'] = 1.
        else:
            data['a_trig'] = 0.
        data['a_size'] = size
        self.shared_program['u_antialias'] = antialias
        self._data = data
        self._vbo.set_data(data)
        self.shared_program.bind(self._vbo)
        self.update()

    def _prepare_transforms(self, view):
        xform = view.transforms.get_transform()
        view.view_program.vert['transform'] = xform

    def _prepare_draw(self, view):
        view.view_program['u_px_scale'] = view.transforms.pixel_scale
        view.view_program['u_scale'] = 1

    def _compute_bounds(self, axis, view):
        pos = self._data['a_position']
        if pos is None:
            return None
        if pos.shape[1] > axis:
            return (pos[:, axis].min(), pos[:, axis].max())
        else:
            return (0, 0)