1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
# -*- coding: utf-8 -*-
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
"""Windbarb Visual and shader definitions."""
import numpy as np
from vispy.color import ColorArray
from vispy.gloo import VertexBuffer
from vispy.visuals.shaders import Variable
from vispy.visuals.visual import Visual
_VERTEX_SHADER = """
uniform float u_antialias;
uniform float u_px_scale;
uniform float u_scale;
attribute vec3 a_position;
attribute vec2 a_wind;
attribute vec4 a_fg_color;
attribute vec4 a_bg_color;
attribute float a_edgewidth;
attribute float a_size;
attribute float a_trig;
varying vec4 v_fg_color;
varying vec4 v_bg_color;
varying vec2 v_wind;
varying float v_trig;
varying float v_edgewidth;
varying float v_antialias;
void main (void) {
$v_size = a_size * u_px_scale * u_scale;
v_edgewidth = a_edgewidth * float(u_px_scale);
v_wind = a_wind.xy;
v_trig = a_trig;
v_antialias = u_antialias;
v_fg_color = a_fg_color;
v_bg_color = a_bg_color;
gl_Position = $transform(vec4(a_position,1.0));
float edgewidth = max(v_edgewidth, 1.0);
gl_PointSize = ($v_size) + 4.*(edgewidth + 1.5*v_antialias);
}
"""
_FRAGMENT_SHADER = """
#include "math/constants.glsl"
#include "math/signed-segment-distance.glsl"
#include "antialias/antialias.glsl"
varying vec4 v_fg_color;
varying vec4 v_bg_color;
varying vec2 v_wind;
varying float v_trig;
varying float v_edgewidth;
varying float v_antialias;
// SDF-Triangle by @rougier
// https://github.com/rougier/python-opengl/blob/master/code/chapter-06/SDF-triangle.py
float sdf_triangle(vec2 p, vec2 p0, vec2 p1, vec2 p2)
{
vec2 e0 = p1 - p0;
vec2 e1 = p2 - p1;
vec2 e2 = p0 - p2;
vec2 v0 = p - p0;
vec2 v1 = p - p1;
vec2 v2 = p - p2;
vec2 pq0 = v0 - e0*clamp( dot(v0,e0)/dot(e0,e0), 0.0, 1.0 );
vec2 pq1 = v1 - e1*clamp( dot(v1,e1)/dot(e1,e1), 0.0, 1.0 );
vec2 pq2 = v2 - e2*clamp( dot(v2,e2)/dot(e2,e2), 0.0, 1.0 );
float s = sign( e0.x*e2.y - e0.y*e2.x );
vec2 d = min( min( vec2( dot( pq0, pq0 ), s*(v0.x*e0.y-v0.y*e0.x) ),
vec2( dot( pq1, pq1 ), s*(v1.x*e1.y-v1.y*e1.x) )),
vec2( dot( pq2, pq2 ), s*(v2.x*e2.y-v2.y*e2.x) ));
return -sqrt(d.x)*sign(d.y);
}
void main()
{
// Discard plotting marker body and edge if zero-size
if ($v_size <= 0.)
discard;
float edgewidth = max(v_edgewidth, 1.0);
float linewidth = max(v_edgewidth, 1.0);
float edgealphafactor = min(v_edgewidth, 1.0);
float size = $v_size + 4.*(edgewidth + 1.5*v_antialias);
// factor 6 for acute edge angles that need room as for star marker
vec2 wind = v_wind;
if (v_trig > 0.)
{
float u = wind.x * cos(radians(wind.y));
float v = wind.x * sin(radians(wind.y));
wind = vec2(u, v);
}
// knots to m/s
wind *= 2.;
// normalized distance
float dx = 0.5;
// normalized center point
vec2 O = vec2(dx);
// normalized x-component
vec2 X = normalize(wind) * dx / M_SQRT2 / 1.1 * vec2(1, -1);
// normalized y-component
// here the barb can be mirrored for southern earth * (vec2(1., -1.)
//vec2 Y = X.yx * vec2(1., -1.); // southern hemisphere
vec2 Y = X.yx * vec2(-1., 1.); // northern hemisphere
// PointCoordinate
vec2 P = gl_PointCoord;
// calculate barb items
float speed = length(wind);
int flag = int(floor(speed / 50.));
speed -= float (50 * flag);
int longbarb = int(floor(speed / 10.));
speed -= float (longbarb * 10);
int shortbarb = int(floor(speed / 5.));
int calm = shortbarb + longbarb + flag;
// starting distance
float r;
// calm, plot circles
if (calm == 0)
{
r = abs(length(O-P)- dx * 0.2);
r = min(r, abs(length(O-P)- dx * 0.1));
}
else
{
// plot shaft
r = segment_distance(P, O, O-X);
float pos = 1.;
// plot flag(s)
while(flag >= 1)
{
r = min(r, sdf_triangle(P, O-X*pos, O-X*pos-X*.4-Y*.4, O-X*pos-X*.4));
flag -= 1;
pos -= 0.15;
}
// plot longbarb(s)
while(longbarb >= 1)
{
r = min(r, segment_distance(P, O-X*pos, O-X*pos-X*.4-Y*.4));
longbarb -= 1;
pos -= 0.15;
}
// plot shortbarb
while(shortbarb >= 1)
{
if (pos == 1.0)
pos -= 0.15;
r = min(r, segment_distance(P, O-X*pos, O-X*pos-X*.2-Y*.2));
shortbarb -= 1;
pos -= 0.15;
}
}
// apply correction for size
r *= size;
vec4 edgecolor = vec4(v_fg_color.rgb, edgealphafactor*v_fg_color.a);
if (r > 0.5 * v_edgewidth + v_antialias)
{
// out of the marker (beyond the outer edge of the edge
// including transition zone due to antialiasing)
discard;
}
gl_FragColor = filled(r, edgewidth, v_antialias, edgecolor);
}
"""
class WindbarbVisual(Visual):
"""Visual displaying windbarbs."""
_shaders = {
'vertex': _VERTEX_SHADER,
'fragment': _FRAGMENT_SHADER,
}
def __init__(self, **kwargs):
self._vbo = VertexBuffer()
self._v_size_var = Variable('varying float v_size')
self._marker_fun = None
self._data = None
Visual.__init__(self, vcode=self._shaders['vertex'], fcode=self._shaders['fragment'])
self.shared_program.vert['v_size'] = self._v_size_var
self.shared_program.frag['v_size'] = self._v_size_var
self.set_gl_state(depth_test=True, blend=True,
blend_func=('src_alpha', 'one_minus_src_alpha'))
self._draw_mode = 'points'
if len(kwargs) > 0:
self.set_data(**kwargs)
self.freeze()
def set_data(self, pos=None, wind=None, trig=True, size=50.,
antialias=1., edge_width=1., edge_color='black',
face_color='white'):
"""Set the data used to display this visual.
Parameters
----------
pos : array
The array of locations to display each windbarb.
wind : array
The array of wind vector components to display each windbarb.
in m/s. For knots divide by two.
trig : bool
True - wind contains (mag, ang)
False - wind contains (u, v)
defaults to True
size : float or array
The windbarb size in px.
antialias : float
The antialiased area (in pixels).
edge_width : float | None
The width of the windbarb outline in pixels.
edge_color : Color | ColorArray
The color used to draw each symbol outline.
face_color : Color | ColorArray
The color used to draw each symbol interior.
"""
assert (isinstance(pos, np.ndarray) and
pos.ndim == 2 and pos.shape[1] in (2, 3))
assert (isinstance(wind, np.ndarray) and
pos.ndim == 2 and pos.shape[1] == 2)
if edge_width < 0:
raise ValueError('edge_width cannot be negative')
# since the windbarb starts in the fragment center,
# we need to multiply by 2 for correct length
size *= 2
edge_color = ColorArray(edge_color).rgba
if len(edge_color) == 1:
edge_color = edge_color[0]
face_color = ColorArray(face_color).rgba
if len(face_color) == 1:
face_color = face_color[0]
n = len(pos)
data = np.zeros(n, dtype=[('a_position', np.float32, 3),
('a_wind', np.float32, 2),
('a_trig', np.float32, 0),
('a_fg_color', np.float32, 4),
('a_bg_color', np.float32, 4),
('a_size', np.float32),
('a_edgewidth', np.float32)])
data['a_fg_color'] = edge_color
data['a_bg_color'] = face_color
data['a_edgewidth'] = edge_width
data['a_position'][:, :pos.shape[1]] = pos
data['a_wind'][:, :wind.shape[1]] = wind
if trig:
data['a_trig'] = 1.
else:
data['a_trig'] = 0.
data['a_size'] = size
self.shared_program['u_antialias'] = antialias
self._data = data
self._vbo.set_data(data)
self.shared_program.bind(self._vbo)
self.update()
def _prepare_transforms(self, view):
xform = view.transforms.get_transform()
view.view_program.vert['transform'] = xform
def _prepare_draw(self, view):
view.view_program['u_px_scale'] = view.transforms.pixel_scale
view.view_program['u_scale'] = 1
def _compute_bounds(self, axis, view):
pos = self._data['a_position']
if pos is None:
return None
if pos.shape[1] > axis:
return (pos[:, axis].min(), pos[:, axis].max())
else:
return (0, 0)
|