1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
# -*- coding: utf-8 -*-
# vispy: testskip
# -----------------------------------------------------------------------------
# Copyright (c) Vispy Development Team. All Rights Reserved.
# Distributed under the (new) BSD License. See LICENSE.txt for more info.
# -----------------------------------------------------------------------------
"""
Compare an optimal plot grid implementation to the same functionality
provided by scenegraph.
Use --vispy-cprofile to see an overview of time spent in all functions.
Use util.profiler and --vispy-profile=ClassName.method_name for more directed
profiling measurements.
"""
from __future__ import division
import numpy as np
from vispy import gloo, app, scene, visuals
from vispy.util.profiler import Profiler
class GridCanvas(app.Canvas):
def __init__(self, cells, **kwargs):
m, n = (10, 10)
self.grid_size = (m, n)
self.cells = cells
super(GridCanvas, self).__init__(keys='interactive',
show=True, **kwargs)
def on_initialize(self, event):
self.context.set_state(clear_color='black', blend=True,
blend_func=('src_alpha', 'one_minus_src_alpha'))
def on_mouse_move(self, event):
if event.is_dragging and not event.modifiers:
dx = (event.pos - event.last_event.pos) * [1, -1]
i, j = event.press_event.pos / self.size
m, n = len(self.cells), len(self.cells[0])
cell = self.cells[int(i*m)][n - 1 - int(j*n)]
if event.press_event.button == 1:
offset = (np.array(cell.offset) +
(dx / (np.array(self.size) / [m, n])) *
(2 / np.array(cell.scale)))
cell.set_transform(offset, cell.scale)
else:
cell.set_transform(cell.offset, cell.scale * 1.05 ** dx)
self.update()
def on_draw(self, event):
prof = Profiler() # noqa
self.context.clear()
M = len(self.cells)
N = len(self.cells[0])
w, h = self.size
for i in range(M):
for j in range(N):
self.context.set_viewport(w*i/M, h*j/N, w/M, h/N)
self.cells[i][j].draw()
vert = """
attribute vec2 pos;
uniform vec2 offset;
uniform vec2 scale;
void main() {
gl_Position = vec4((pos + offset) * scale, 0, 1);
}
"""
frag = """
void main() {
gl_FragColor = vec4(1, 1, 1, 0.5);
}
"""
class Line(object):
def __init__(self, data, offset, scale):
self.data = gloo.VertexBuffer(data)
self.program = gloo.Program(vert, frag)
self.program['pos'] = self.data
self.set_transform(offset, scale)
def set_transform(self, offset, scale):
self.offset = offset
self.scale = scale
self.program['offset'] = self.offset
self.program['scale'] = self.scale
def draw(self):
self.program.draw('line_strip')
scales = np.array((1.9 / 100., 2. / 10.))
class VisualCanvas(app.Canvas):
def __init__(self, vis, **kwargs):
super(VisualCanvas, self).__init__(keys='interactive',
show=True, **kwargs)
m, n = (10, 10)
self.grid_size = (m, n)
self.visuals = vis
def on_initialize(self, event):
self.context.set_state(clear_color='black', blend=True,
blend_func=('src_alpha', 'one_minus_src_alpha'))
def on_mouse_move(self, event):
if event.is_dragging and not event.modifiers:
dx = np.array(event.pos - event.last_event.pos)
x, y = event.press_event.pos / self.size
m, n = self.grid_size
i, j = int(x*m), n - 1 - int(y*n)
v = self.visuals[i][j]
tr = v.transform
if event.press_event.button == 1:
tr.translate = np.array(tr.translate)[:2] + \
dx * scales * (1, -1)
else:
tr.scale = tr.scale[:2] * 1.05 ** (dx * (1, -1))
self.update()
def on_draw(self, event):
prof = Profiler() # noqa
self.context.clear()
M, N = self.grid_size
w, h = self.size
for i in range(M):
for j in range(N):
self.context.set_viewport(w*i/M, h*j/N, w/M, h/N)
self.visuals[i][j].draw()
if __name__ == '__main__':
M, N = (10, 10)
data = np.empty((10000, 2), dtype=np.float32)
data[:, 0] = np.linspace(0, 100, data.shape[0])
data[:, 1] = np.random.normal(size=data.shape[0])
# Optimized version
cells = []
for i in range(M):
row = []
cells.append(row)
for j in range(N):
row.append(Line(data, offset=(-50, 0), scale=scales))
gcanvas = GridCanvas(cells, position=(400, 300), size=(800, 600),
title="GridCanvas")
# Visual version
vlines = []
for i in range(M):
row = []
vlines.append(row)
for j in range(N):
v = visuals.LineVisual(pos=data, color='w', method='gl')
v.transform = visuals.transforms.STTransform(
translate=(-1, 0), scale=scales)
row.append(v)
vcanvas = VisualCanvas(vlines, position=(400, 300), size=(800, 600),
title="VisualCanvas")
# Scenegraph version
scanvas = scene.SceneCanvas(show=True, keys='interactive',
title="SceneCanvas")
scanvas.size = 800, 600
grid = scanvas.central_widget.add_grid(margin=0)
lines = []
for i in range(10):
lines.append([])
for j in range(10):
vb = grid.add_view(camera='panzoom', row=i, col=j)
vb.camera.set_range([0, 100], [-5, 5], margin=0)
line = scene.visuals.Line(pos=data, color='w', method='gl')
vb.add(line)
scanvas.show()
import sys
if sys.flags.interactive != 1:
app.run()
|